Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.12.1005

Comparison of Fecal Microbiota between Birth and Weaning of Halla Horses Using 16S rRNA Gene Amplicon Sequencing  

Lee, Jongan (Subtropical Livestock Research Institute, National Institute of Animal Science, RDA)
Kang, Young-Jun (Subtropical Livestock Research Institute, National Institute of Animal Science, RDA)
Choi, Jae-Young (Subtropical Livestock Research Institute, National Institute of Animal Science, RDA)
Shin, Sang-Min (Subtropical Livestock Research Institute, National Institute of Animal Science, RDA)
Shin, Moon-Cheol (Subtropical Livestock Research Institute, National Institute of Animal Science, RDA)
Publication Information
Journal of Life Science / v.32, no.12, 2022 , pp. 1005-1012 More about this Journal
Abstract
This study was conducted to investigate the taxonomic composition and diversity of fecal microbiota between birth and weaning stages of Halla horses using 16S rRNA gene amplicon sequencing analysis. Proteobacteria (35.7%) and Firmicutes (45.6%) were identified as the most common phylum in birth and weaning, respectively. Escherichia (19.7%) and Clostridium (14.0%) were observed as the most dominant genus in birth, and Fibrobacter (6.6%) was the highest in weaning. The results of α-diversity showed that the richness and evenness in microbial communities were statistically significant (p<0.001) in birth and weaning. The results of β-diversity indicated that the birth and weaning stages were clearly divided into two groups at the genus and species levels. Permutational multivariate analysis of variance (PERMANOVA) showed that the microbiota composition differences between birth and weaning were statistically significant (q<0.001). A linear discriminant analysis effect (LEfSe) was performed to select taxonomic makers between the birth and weaning stages. On the genus level, Escherichia, Bacteroides, Clostridium, and Methylobacterium were relatively abundant at birth, whereas Fibrobacter was more abundant at weaning. We expect that this research can be utilized as basic data in the identification of microbial communities involved in disease prevention and nutrient absorption in Halla horses.
Keywords
Diversity; fecal microbiota; Halla horses; taxonomic composition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Urubschurov, V., Stroebel, C., Gunther, E., Romanowski, K., Busing, K. and Zeyner, A. 2019. Effect of oral supplementation of probiotic strains of Lactobacillus rhamnosus and Enterococcus faecium on the composition of the faecal microbiota of foals. J. Anim. Physiol. Anim. Nutr. 103, 915-924.   DOI
2 Arroyo, L. G., Rossi, L., Santos, B. P., Gomez, D. E., Surette, M. G. and Costa, M. C. 2020. Luminal and mucosal microbiota of the cecum and large colon of healthy and diarrheic horses. Animals 10, 1403.   DOI
3 Costa, M. C., Arroyo, L. G., Allen-Vercoe, E., Stampfli, H. R., Kim, P. T., Sturgeon, A. and Weese, J. S. 2012. Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16S rRNA gene. PLoS One 7, e41484   DOI
4 Faubladier, C., Julliand, V., Beuneiche, L. and Philippeau, C. 2017. Comparative fibre-degrading capacity in foals at immediate and late post-weaning periods. Animal 11, 1497-1504.   DOI
5 Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. and Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194-2200.   DOI
6 Garber, A., Hastie, P. and Murray, J. A. 2020. Factors influencing equine gut microbiota: Current knowledge. J. Equine Vet. Sci. 88, 102943.   DOI
7 Haq, I., Durrani, A. Z., Khan, M. S., Mushtaq, M. H. and Ahmad, I. 2017. A study on causes of pathogenic diarrhea in foals in Punjab, Pakistan. J. Equine Vet. Sci. 56, 88-92.   DOI
8 Husso, A., Jalanka, J., Alipour, M., Huhti, P., Kareskoski, M., Pessa-Morikawa, T., Iivanainen, A. and Niku, M. 2020. The composition of the perinatal intestinal microbiota in horse. Sci. Rep. 10, 1-12.   DOI
9 Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. and Knight, R. 2011. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169-172.   DOI
10 Hortal, J., Borges, P. A. and Gaspar, C. 2006. Evaluating the performance of species richness estimators: sensitivity to sample grain size. J. Anim. Ecol. 75, 274-287.   DOI
11 Seong, C. N., Kim, M. S., Kang, J. W. and Park, H. M. 2019. Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species. J. Species Res. 8, 197-214.   DOI
12 Uzal, F. A., Navarro, M. A., Asin, J. and Henderson, E. E. 2022. Clostridial diseases of Horses: A Review. Vaccines 10, 318.   DOI
13 Schoster, A., Guardabassi, L., Staempfli, H., Abrahams, M., Jalali, M. and Weese, J. 2016. The longitudinal effect of a multi-strain probiotic on the intestinal bacterial microbiota of neonatal foals. Equine Vet. J. 48, 689-696.   DOI
14 Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P. and Balamurugan, R. 2020. The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 12, 1474.   DOI
15 Ministry of Agriculture, Food and Rural Affairs. 2022. Horse industry survey 2021, pp. 27, Sejong, Republic of Korea
16 Park, T., Cheong, H., Yoon, J., Kim, A., Yun, Y. and Unno, T. 2021. Comparison of the fecal microbiota of horses with intestinal disease and their healthy counterparts. Vet. Sci. 8, 113.   DOI
17 Sorensen, R. J., Drouillard, J. S., Douthit, T. L., Ran, Q., Marthaler, D. G., Kang, Q., Vahl, C. I. and Lattimer, J. M. 2021. Effect of hay type on cecal and fecal microbiome and fermentation parameters in horses. J. Anim. Sci. 99, skaa407.   DOI
18 Xia, Y. and Sun, J. 2017. Hypothesis testing and statistical analysis of microbiome. Genes Dis. 4, 138-148.   DOI
19 Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613.   DOI
20 Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S. and Huttenhower, C. 2011. Metagenomic biomarker discovery and explanation. Genome Bio. 12, 1-18.
21 De La Torre, U., Henderson, J. D., Furtado, K. L., Pedroja, M., Elenamarie, O. M., Mora, A., Pechanec, M. Y., Maga, E. A. and Mienaltowski, M. J. 2019. Utilizing the fecal microbiota to understand foal gut transitions from birth to weaning. PLoS One 14, e0216211.   DOI
22 Asanuma, N. and Hino, T. 2002. Regulation of fermentation in a ruminal bacterium, Streptococcus bovis, with special reference to rumen acidosis. Anim. Sci. J. 73, 313-325.   DOI
23 Costa, M., Stampfli, H., Allen-Vercoe, E. and Weese, J. S. 2016. Development of the faecal microbiota in foals. Equine Vet. J. 48, 681-688.   DOI
24 Costa, M. C. and Weese, J. S. 2012. The equine intestinal microbiome. Anim. Health Res. Rev. 13, 121-128.   DOI