• Title/Summary/Keyword: features-extracting

Search Result 606, Processing Time 0.029 seconds

Extraction of User Preference for Video Stimuli Using EEG-Based User Responses

  • Moon, Jinyoung;Kim, Youngrae;Lee, Hyungjik;Bae, Changseok;Yoon, Wan Chul
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1105-1114
    • /
    • 2013
  • Owing to the large number of video programs available, a method for accessing preferred videos efficiently through personalized video summaries and clips is needed. The automatic recognition of user states when viewing a video is essential for extracting meaningful video segments. Although there have been many studies on emotion recognition using various user responses, electroencephalogram (EEG)-based research on preference recognition of videos is at its very early stages. This paper proposes classification models based on linear and nonlinear classifiers using EEG features of band power (BP) values and asymmetry scores for four preference classes. As a result, the quadratic-discriminant-analysis-based model using BP features achieves a classification accuracy of 97.39% (${\pm}0.73%$), and the models based on the other nonlinear classifiers using the BP features achieve an accuracy of over 96%, which is superior to that of previous work only for binary preference classification. The result proves that the proposed approach is sufficient for employment in personalized video segmentation with high accuracy and classification power.

Contour and Feature Parameter Extraction for Moving Object Tracking in Traffic Scenes (도로영상에서 움직이는 물체 추적을 위한 윤곽선 및 특징 파라미터 추출)

  • Lee, Chul-Hun;Seol Sung-Wook;Joo Jae-Heum;Nam Ki-Gon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.1
    • /
    • pp.11-20
    • /
    • 2000
  • This paper presents the method of extracting the contour and shape parameters for moving object tracking in traffic scenes. The contour is extracted by applying difference image method in reduction image and the features are extracted from original image to grow the accuracy of tracking. We used features such as circle distribution, center moment, and maximum and minimum ratio. Data association problem is solved by these features. Kalman filters are used for moving object tracking on real time. The simulation results indicate that the proposed algorithm appears to generate feature vectors good enough for multiple vehicle tracking.

  • PDF

Corresponding Points Tracking of Aerial Sequence Images

  • Ochirbat, Sukhee;Shin, Sung-Woong;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.11-16
    • /
    • 2008
  • The goal of this study is to evaluate the KLT(Kanade-Lucas-Tomasi) for extracting and tracking the features using various data acquired from UAV. Sequences of images were collected for Jangsu-Gun area to perform the analysis. Four data sets were subjected to extract and track the features using the parameters of the KLT. From the results of the experiment, more than 90 percent of the features extracted from the first frame could successfully track through the next frame when the shift between frames is small. But when the frame to frame motion is large in non-consecutive frames, KLT tracker is failed to track the corresponding points. Future research will be focused on feature tracking of sequence frames with large shift and rotation.

  • PDF

Study of Emotion Recognition based on Facial Image for Emotional Rehabilitation Biofeedback (정서재활 바이오피드백을 위한 얼굴 영상 기반 정서인식 연구)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.957-962
    • /
    • 2010
  • If we want to recognize the human's emotion via the facial image, first of all, we need to extract the emotional features from the facial image by using a feature extraction algorithm. And we need to classify the emotional status by using pattern classification method. The AAM (Active Appearance Model) is a well-known method that can represent a non-rigid object, such as face, facial expression. The Bayesian Network is a probability based classifier that can represent the probabilistic relationships between a set of facial features. In this paper, our approach to facial feature extraction lies in the proposed feature extraction method based on combining AAM with FACS (Facial Action Coding System) for automatically modeling and extracting the facial emotional features. To recognize the facial emotion, we use the DBNs (Dynamic Bayesian Networks) for modeling and understanding the temporal phases of facial expressions in image sequences. The result of emotion recognition can be used to rehabilitate based on biofeedback for emotional disabled.

Automatic Extraction and Measurement of Visual Features of Mushroom (Lentinus edodes L.) (표고 외관 특징점의 자동 추출 및 측정)

  • Hwang, Heon;Lee, Yong-Guk
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.37-51
    • /
    • 1992
  • Quantizing and extracting visual features of mushroom(Lentinus edodes L.) are crucial to the sorting and grading automation, the growth state measurement, and the dried performance indexing. A computer image processing system was utilized for the extraction and measurement of visual features of front and back sides of the mushroom. The image processing system is composed of the IBM PC compatible 386DK, ITEX PCVISION Plus frame grabber, B/W CCD camera, VGA color graphic monitor, and image output RGB monitor. In this paper, an automatic thresholding algorithm was developed to yield the segmented binary image representing skin states of the front and back sides. An eight directional Freeman's chain coding was modified to solve the edge disconnectivity by gradually expanding the mask size of 3$\times$3 to 9$\times$9. A real scaled geometric quantity of the object was directly extracted from the 8-directional chain element. The external shape of the mushroom was analyzed and converted to the quantitative feature patterns. Efficient algorithms for the extraction of the selected feature patterns and the recognition of the front and back side were developed. The developed algorithms were coded in a menu driven way using MS_C language Ver.6.0, PC VISION PLUS library fuctions, and VGA graphic functions.

  • PDF

An Optimized CLBP Descriptor Based on a Scalable Block Size for Texture Classification

  • Li, Jianjun;Fan, Susu;Wang, Zhihui;Li, Haojie;Chang, Chin-Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.288-301
    • /
    • 2017
  • In this paper, we propose an optimized algorithm for texture classification by computing a completed modeling of the local binary pattern (CLBP) instead of the traditional LBP of a scalable block size in an image. First, we show that the CLBP descriptor is a better representative than LBP by extracting more information from an image. Second, the CLBP features of scalable block size of an image has an adaptive capability in representing both gross and detailed features of an image and thus it is suitable for image texture classification. This paper successfully implements a machine learning scheme by applying the CLBP features of a scalable size to the Support Vector Machine (SVM) classifier. The proposed scheme has been evaluated on Outex and CUReT databases, and the evaluation result shows that the proposed approach achieves an improved recognition rate compared to the previous research results.

Feature Extraction for Automatic Golf Swing Analysis by Image Processing (영상처리를 이용한 골프 스윙 자동 분석 특징의 추출)

  • Kim, Pyeoung-Kee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.53-58
    • /
    • 2006
  • In this paper, I propose an image based feature extraction method for an automatic golf swing analysis. While most swing analysis systems require an expert like teaching professional, the proposed method enables an automatic swing analysis without a professional. The extracted features for swing analysis include not only key frames such as addressing, backward swing, top, forward swing, impact, and follow-through swing but also important positions of golfer's body parts such as hands, shoulders, club head, feet, knee. To see the effectiveness of the proposed method. I tested it for several swing pictures. Experimental results show that the proposed method is effective for extracting important swing features. Further research is under going to develop an automatic swing analysis system using the proposed features.

  • PDF

Heart Sound Localization in Respiratory Sounds Based on Singular Spectrum Analysis and Frequency Features

  • Molaie, Malihe;Moradi, Mohammad Hassan
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.824-832
    • /
    • 2015
  • Heart sounds are the main obstacle in lung sound analysis. To tackle this obstacle, we propose a diagnosis algorithm that uses singular spectrum analysis (SSA) and frequency features of heart and lung sounds. In particular, we introduce a frequency coefficient that shows the frequency difference between heart and lung sounds. The proposed algorithm is applied to a synthetic mixture of heart and lung sounds. The results show that heart sounds can be extracted successfully and localizations for the first and second heart sounds are remarkably performed. An error analysis of the localization results shows that the proposed algorithm has fewer errors compared to the SSA method, which is one of the most powerful methods in the localization of heart sounds. The presented algorithm is also applied in the cases of recorded respiratory sounds from the chest walls of five healthy subjects. The efficiency of the algorithm in extracting heart sounds from the recorded breathing sounds is verified with power spectral density evaluations and listening. Most studies have used only normal respiratory sounds, whereas we additionally use abnormal breathing sounds to validate the strength of our achievements.

A Study on the Effectiveness of Bigrams in Text Categorization (바이그램이 문서범주화 성능에 미치는 영향에 관한 연구)

  • Lee, Chan-Do;Choi, Joon-Young
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.2
    • /
    • pp.15-27
    • /
    • 2005
  • Text categorization systems generally use single words (unigrams) as features. A deceptively simple algorithm for improving text categorization is investigated here, an idea previously shown not to work. It is to identify useful word pairs (bigrams) made up of adjacent unigrams. The bigrams it found, while small in numbers, can substantially raise the quality of feature sets. The algorithm was tested on two pre-classified datasets, Reuters-21578 for English and Korea-web for Korean. The results show that the algorithm was successful in extracting high quality bigrams and increased the quality of overall features. To find out the role of bigrams, we trained the Na$\"{i}$ve Bayes classifiers using both unigrams and bigrams as features. The results show that recall values were higher than those of unigrams alone. Break-even points and F1 values improved in most documents, especially when documents were classified along the large classes. In Reuters-21578 break-even points increased by 2.1%, with the highest at 18.8%, and F1 improved by 1.5%, with the highest at 3.2%. In Korea-web break-even points increased by 1.0%, with the highest at 4.5%, and F1 improved by 0.4%, with the highest at 4.2%. We can conclude that text classification using unigrams and bigrams together is more efficient than using only unigrams.

  • PDF

Sequence driven features for prediction of subcellular localization of proteins (단백질의 세포내 소 기관별 분포 예측을 위한 서열 기반의 특징 추출 방법)

  • Kim, Jong-Kyoung;Choi, Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.226-228
    • /
    • 2005
  • Predicting the cellular location of an unknown protein gives valuable information for inferring the possible function of the protein. For more accurate Prediction system, we need a good feature extraction method that transforms the raw sequence data into the numerical feature vector, minimizing information loss. In this paper we propose new methods of extracting underlying features only from the sequence data by computing pairwise sequence alignment scores. In addition, we use composition based features to improve prediction accuracy. To construct an SVM ensemble from separately trained SVM classifiers, we propose specificity based weighted majority voting . The overall prediction accuracy evaluated by the 5-fold cross-validation reached $88.53\%$ for the eukaryotic animal data set. By comparing the prediction accuracy of various feature extraction methods, we could get the biological insight on the location of targeting information. Our numerical experiments confirm that our new feature extraction methods are very useful forpredicting subcellular localization of proteins.

  • PDF