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Abstract

In this paper, we propose an optimized algorithm for texture classification by computing a
completed modeling of the local binary pattern (CLBP) instead of the traditional LBP of a
scalable block size in an image. First, we show that the CLBP descriptor is a better
representative than LBP by extracting more information from an image. Second, the CLBP
features of scalable block size of an image has an adaptive capability in representing both
gross and detailed features of an image and thus it is suitable for image texture classification.
This paper successfully implements a machine learning scheme by applying the CLBP
features of a scalable size to the Support Vector Machine (SVM) classifier. The proposed
scheme has been evaluated on Outex and CUReT databases, and the evaluation result shows
that the proposed approach achieves an improved recognition rate compared to the previous
research results.
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1. Introduction

Feature of texture is one of the basic properties of the surface or structure of an object and

also is a hot research area in computer vision recently. In analysis of texture, classification of
texture always has been an important topic of research, and it involves pattern recognition,
applied mathematics, statistics, and other research fields. The extraction of the features of
texture is a key step in description and classification of texture. Therefore, in the past few
decades, extensive research has been conducted on methods of the extraction of features of
texture, and many methods have been developed in this field, such as the well-known gray
level run length, gray level co-occurrence matrix and self-correlation function. Research of
texture feature extraction has been enriched significantly by the continuous expansion of the
application field and the introduction of new theories, such as fractal theory, Markov random
field theory, and wavelet theory.

Ojala et al. [1] proposed an LBP feature descriptor. Because of its high feature
discrimination and low computational complexity, LBP has gained extensive attention in the
research community. In analysis of image, computer vision and pattern recognition, LBP have
been used extensively. Especially, the use of LBP has been studied and developed extensively
in texture classification and face recognition (Ahonen and Hadid [2], Zhao and Pietikanen [3],
Nanni and Lumini [4], Shih and Chuang [5]). Because the original LBP is extracted in binary
image and achieves binary values by comparing the gray values of the central pixel and its
neighbor pixels, it easily can be affected by noise, is sensitive to rotation, and also loses its
local spatial structure. Fortunately, many improved LBP descriptors have been proposed and
have their own advantages, e.g., dominant LBP [6], LBPV [7], BRINT [8], ELBP [9], FLBP
[10], CLBP [11], and CS-LBP [19] which has been widely used [21]. In this paper, we propose
a new method that combines the LBP descriptors with scalable block size for texture
classification as we call SB-CLBP. The scalable block can keep both the coarse-grained and
the detailed information of the texture image. Meanwhile, CLBP takes into consideration the
magnitude component and the intensity value of the center pixel to add additional discriminant
information. Therefore, the SB-CLBP is able to improve the accuracy of classification of
texture.

The remainder of this paper is organized as follows: LBP, multiple LBPs, and CLBP are
briefly introduced in Section 2. Section 3 presents the details of SB-CLBP. The experimental
results and analysis are addressed in Section 4. Our conclusions are presented in Section 5.

2. Related Work

2.1 Local binary patterns (LBP)

The LBP descriptor is very simple and has been used extensively for texture analysis. It first
was proposed by Ojala et al. to characterize the spatial structure of local image texture. It
represents the local texture features of an image by comparing the difference between the gray
values of the central point and its neighboring pixels. The original LBP operator defined a
window with 3x3 pixels, and its threshold was the central pixel of the window. All neighbors
with values higher than or equal to the value of the central pixel are given a value of 1, while
neighbors with values lower than the value of the central pixel are given a value of 0.
Therefore, an 8-bit binary number can be generated from the comparison of eight neighboring
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points and it is assigned as an LBP value of the central pixel in the window and it reflects the
texture information of the region.

In order to adapt to the texture features of different scales, the LBP operator was improved
by Ojala et al. They extended the 3x3 size of the neighborhood to any size and used a circular
neighborhood instead the square neighborhood. The improved LBP operator is allowed to
have any number of pixels in the circular neighborhood with a radius of R, so we can get the
LBP operator, such as a circular area with a radius of R with P sampling pixels, as shown in
Fig. 1.
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Fig. 1. Circularly symmetric neighbor sets for different (P, R)

The formula is defined as follows:

= 1x>0
LBPr.r= 5(gp—0c)2°,5(X) =4 . 1
PR g(gp 9c)2°,s(x) {O,x<0 (1)

R is the radius of the neighborhood, P is the total number of pixels in circular area, g. is the
gray value of the central pixel, g, is the value of its neighbors. In order to make the descriptor
rotation invariant, a uniform rotation invariant LBP is proposed. The definition is as follows:

P-1
iz | 2 oS(9e—0e) if U(LBPr.r)<2
LB _{P+p10 otherwise ’ (2)

where
U (LBPe,r) =/ S(gp-1—gc) —S(go—gc) |

p-1
+>°|5(gp—ge) —S(go-1— gc) |
p=1

U measures the number of transitions from 0 to 1 or 1 to 0 in a binary sequence, gy is the value
of the first pixel in the neighborhood of g, gp-1 is the value of the p-1th pixel point in the
neighborhood of g.. (Binary sequence connected end to end).

For uniform rotation invariant LBP, all binary sequences which have more than 2
transitions are classified as the same mode. The mapping from LBPs to LBP;%, which has
P+2 distinct output values, can be implemented with a lookup table.

3)
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2.2 Multiple-Block LBP (MB-LBP)

The LBP operator can describe the local texture information of the image. However, because
of the features of localization, it easily can be affected by noise and not be robust enough due
to the lack of a coarse-grained grasp of the overall image information. Fortunately, the
MB-LBP algorithm can be used to overcome these deficiencies. In the calculation of the
MB-LBP, the comparison between the pixel values of the LBP operator is replaced by the
average gray value of the pixel block. MBS-LBP represents an LBP operator with a pixel
block that measures SxS. The different pixel blocks represent different observation and
particle size analyses, as shown in Fig. 2.

10 20 15
30 15 10 20 120 50 0 1 0
10 10 60
) | o 85 116 | mmmp | o0 1
50 160 10 0 1 0
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Fig. 2. (a) Each square in the fine line represents a pixel; (b) each square in the thick line represents
a pixel block, and the value of the pixel block is the mean value of all pixels in the block; (c) calculated
LBP after being divided into blocks

Formula of MB-LBP operator is defined as follows:

Lo 1,x>0
MB - LBP = S(Ih—1c 2n,SX =7 . 4
Z(; (h=ie)2", 509 =1 o @
where i, is the mean value of the neighboring blocks, and i is the mean value of the central
pixel block. The total number of neighboring blocks is eight. Fig. 3 shows that, as the size S of
the pixel block increases, the texture of image becomes coarser and tends to be stable, which
shows that larger pixel blocks can help us grasp the coarse-grained information of an image.

(©
Fig. 3. Texture image after being filtered by MBs -LBP: (a) original; (b) after being filtered by
MB;-LBP; (c) after being filtered by MB,-LBP; (d) after being filtered by MB;-LBP
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2.3 A completed model of the local binary pattern (CLBP)

The LBP operator proposed by Ojala et al. does a good job of texture classification. But, from
the formula, we see that the result of the comparison between the center pixel and its
neighboring pixels is either 0 or 1, and it loses local difference information, which leads to two
different textures being placed in the same classification. Fig. 4 shows an example of this. It is
difficult to say that they have similar local structures.

50 120 a0 10 60 40

120 100 80 100 50 20

30 150 160 20 120 50
(a) LBP code: 01001101 (b) LBP code: 01001101

Fig. 4. (a) and (b) have the same LBP code

In order to improve the ability to distinguish the local structures, Guo et al. proposed the
completed LBP by combining CLBP_S, CLBP_M, and CLBP_C. The introduction of
CLBP_M and CLBP C increases the distinguishable information of texture. The CLBP_S
descriptor is equivalent to the original LBP descriptor, and the CLBP_M descriptor is the
magnitude difference between center pixel and its neighboring pixels. Its formula is defined as
follows:

i , 1, x>0
CLBP _Mpr=>» s(mi—-¢)2', mi=lagp—aqc|, S(X)=<" . 5
_Mpr=)"s(mi—c)2', mi=go—ge|, S(X) {O,x<0 (5)

3. Proposed method

3.1 Scalabe-Block CLBP(SB-CLBP)

The CLBP proposed by Guo et al. adds extra distinguishable texture information, i.e.,
CLBP_M and CLBP_C, on the basis of LBP. Inspired by their work, we use slide window
technique to calculate mean value of it and then calculate the CLBP of the mean image so that
coarse-grained information can be reflected clearly. This technique is similar to that of
multiple scales which have been widely used [22]. The coarse-grained information is added to
the original CLBP, which is equivalent to the combination of local information and global
information, resulting in further improvement in the texture classification ability of CLBP.

Fig. 5 shows the working principle of SB-CLBP. First, the CLBP_S, CLBP_M, and
CLBP_C of the original image are calculated to obtain the mapping of CLBP, and then the
statistical histogram is calculated. Second, the original image is divided into blocks, and the
same calculation is carried out on them. The calculated CLBP histogram and CLBP histogram
of the original image are combined and used for classification of texture.

Different slide window size represents different observation and analysis size. Therefore,
we can use slide windows with different sizes and calculate their CLBP histogram to get
different coarse-grained information. Their CLBP histograms are combined with the CLBP
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histogram of the original image to further improve the ability to classify the texture, as shown
in Fig. 6.
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Fig. 6. A modified SB-CLBP
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3.2 Our proposed scheme for texture classification

The proposed scheme is divided into two parts: training and testing. The overall framework is
shown in Fig 7. Numbers of samples from standard texture library are selected for training a
module in the training part. The size of the selected image is of 128*128 pixels. Classifier we
choose is SVM or AdaBoost. Both SVM and AdaBoost have been extensively adopted in
many applications. However, the training and incremental learning processes of AdaBoost are
much slower than that of SVM [20]. Therefore, the SB-CLBP features of all the blocks are
extracted to train the SVM classifier and then the trained model is used as the classifier. The
flowchart of texture classification is shown as below. First, the CLBP histograms of kinds of
texture images are calculated which contain CLBP histograms of original images and CLBP
histograms of scalable-block images. On the other hand, the testing image follows the same
schedule as the training part. In the end, it is classified by the trained SVM classifier.

training

many kinds of
texture images &

- Extracting SB-LBP
i feature

testing
SVM classifier

test image

TR - Extracting SB-LBP
ATLGY feature

classification result

Fig. 7. Flowchart of texture classification

4. Experimental Results and Analysis

In order to verify the effectiveness of the proposed SB-CLBP texture feature extraction
method, a series of experiments have been conducted on two representative texture databases,
i.e., the Outex database [18] and the CUReT database [12]. We compared the proposed
method with other methods, including CLBP, CILBP [14], VZ_MRS8 [13], VZ_Joint [15, 16],
and URIG [17].

4.1 Experimental results on the Outex database

The Outex database, which includes the 24 classes of textures shown in Fig. 8, is used to
demonstrate the significance of our proposed method. Two test suites in Outex are chosen in
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our experiment, i.e. Outex_TC_00010 (TC10) and Outex TC_00012 (TC12). They are
collected under three different illuminants (“horizon”, “inca”, and “t184”) and nine different
rotation angles (0° , 5° , 10° , 15° , 30° , 45° , 60° , 75° and 90° ). There are 20
non-overlapping 128*128 samples of texture in each class in order to fit every situation. For
TC10, all textures in this test suite have the same illuminant, i.e., “inca”. Samples of illuminant
“inca” and angle 0° in each class are used to train the classifier, and the other eight rotation
angles with the same illumination are used as testing sets. Hence, there are 480 (24*20)
models for training and 3840 (24*8*20) models for validation. For TC12, the texture classes
are the same as TC10. The classifier is trained with the same training samples as TC10, but it is
tested with all samples that are captured at all nine rotation angles with the different
illuminants, i.e., t184 and horizon. Therefore, 480 (24*20) models and 4320 (24*20*9)
validation samples are for each illuminance.

i

canvas00| can02 canvas003 canvas005 canvas006

canvasO1 | canvas02 | canvas022 canvas023 canvas025 canvas026

canvas031 ‘ canvas032 l

Fig. 8. 128*128 samples of the 24 different textures from Outex

canvas038 canvas039

carpet005 carpetOO?

Table 1 provides the experimental results under different experimental methods. The
results of methods that are used as contrast are obtained directly from the literatures. By
analyzing the results in Table 1, the following results are obtained:

First, for the proposed SB-CLBP_S descriptor, SBy.3.4-CLBP_S%5 (94.89%) and
SB,.3-CLBP_S5, (93.82%) are improved much more than CLBP_S};5 (86.96%).

Second, for the proposed SB-CLBP_M descriptor, SB.3:4-CLBP_Ms; (93.64%) and
SB,.3-CLBP_M35 (93.82%) are improved much more than CLBP_M35 (85.11%).
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Third, for the combination of multiple descriptors, the method proposed in this paper also
significantly improved the accuracy of classification. For example, the accuracy of
SBs-CLBP_S;i¥ IM3yY  (92.04%) is higher than CLBP_Si? /My (86.85%), and the
SBy.3+4-CLBP_S§5 M5 /C (97.90%) descriptor is higher than the CLBP_Sj; Mi5 /C
(93.36%) descriptor.

The classification accuracy of the descriptor, which is a combination of CLBP of two
different block sizes, is higher than that of the single block descriptor. For instance, the
SB,.3-CLBP_Sps Mix/C descriptor is better than SB;-CLBP_Sp Mg /C descriptor. With
the increase in the number of different block sizes, the accuracy of classification can be
improved accordingly. For instance, SBy3.4-CLBP_S ;% My /C was better than
SB,.3-CLBP_Spr Mg /C. For TC10, the SBy:3:+4-CLBP_Si> Mg /C descriptor achieved the
highest classification accuracy among the texture descriptors. But for TC12(‘t,” “h’), the
accuracy of the CILBP_SMC4... 5. descriptor is slightly higher than our proposed descriptor.

Table 1. The comparison of different experiments

(P, R)=(8, 1) (P, R)=(18, 2) (P, R)=(24, 3)
TC12 TC1z2 TC1z
TC10 o By Average TCL0 o e Average TC10 o BN

84. 81 B5. 46 B3. B8 71.31 89. 40 82, 26 7h. 20 82.28 95. 07 85. 04 80.78 B6. 96

Average

92. 50 81.11 78,32 82. 98 94. 66 89.03 84,91 89. 53 98. 07 91. 69 86. 60 92.12

94. 51 86. 38 82. 96 88.12 97. 94 90. 95 BB.31 92, 27 98. 78 92. 80 89. 88 93. 82

95, 94 89. 21 26. 02 90. 39 98. 46 92.18 20,84 93.49 9g8. 98 94. 40 91. 30 94. 89

281,74 99. 30 62. 77 67. 93 93. 67 73.79 T2. 40 79.95 93. 52 281.18 78. 65 85.11

87.84 69. 54 7178 76. 39 97. 63 24,07 B6. 06 89. 25 98.72 87.78 80, 44 90. 65

MB:+s—CLEP _ 91. 22 T4. 31 78. 02 20.18 98. 83 84,51 26,94 90.09 99.19 29,77 28. 06 92. 3¢
MBaes-s—CLEP M3 91.59 75.28 T6. 92 4l. 26 99, 24 37. 36 9. 42 9z2.01 99.27 91.80 88.75 93. 64
CIBP_MzzIC 90. 36 TZ.38 TE. B& 79. B0 97. 44 86. 9¢ 90. 97 91.78 98. 02 90.7¢ 90.69 93.15
MBs—CLBP_M;31C 93. 02 80. 79 83.17 85. 66 99. 06 91. 16 93. B4 94. 69 99. 06 92. 99 93. 36 95. 14
MB:+:—CLBP M3 94. 43 83. 50 86. 54 838. 09 99. 45 92, BG 94, 61 95. 60 99. 27 93. 98 93. 82 95. 69
MBs+s-4—CLEP_M;3IC 95. 03 B4. 44 87.78 89. 08 99. 66 94,17 956. B6 96. 56 99. 38 94. 91 94. 58 96. 29

94. 53 81. 87 82. 52 86. 30 98. 02 90. 99 91.08 93. 36 98. 33 94. 05 92. 40 94, 92

97. 06 87. 89 88. 73 91. 23 99. 45 94, BB 96. 02 96. 45 99. 43 95. 79 94. 42 96. 55

97. 83 90. 44 90. B3 92. 90 99. B4 96. 00 96. BB 97.23 99. 77 96. B4 95. 46 97. 29

98.15 91. 99 92. 59 94. 24 99. 87 96. 99 96. 85 97. 90 99.79 97.48 95.90 97. 72

94. 66 82.75 83.14 B6. 85 97. 89 90. 55 91.11 93.18 99. 32 93. 58 93.35 95. 41

97. 34 89. 03 89. 75 92. 04 99. 45 95. 16 94, 44 96. 35 99. T4 96.13 94. 84 96. 90

98.15 92. 04 92. 34 94,18 99. 69 95, 79 95, 07 96. 85 99. 71 96. 46 95. 28 97.15
MB2-3-4—CLEP 98.59 93. 54 93. 96 95, 36 99. 77 96, 62 95, 69 a7. 36 99. 77 a7. 20 95. 81 97. 59

96. 56 90. 30 9z. 29 93. 08 98. 72 93. 5¢ 93. 91 95. 39 98. 93 95. 32 94. 53 96. 26
98.15 92.78 94. 79 95, 24 99,19 95, 81 94. 72 96. 57 99.14 96. 32 95. 05 96. 84

MB2+s—CIEP _ 98.39 | 9¢.33 | 96.11 | 96.28 | 95.56 | 96.37 | 95.860 | 97.18 | 99.32 | 96.50 | 95.1% | 9T.00
MBz+s-4—CLEP 98.57 | 94.88 | 96.44 | 96.63 | 98.61 | 9A.81 | 95.58 | 97.33 | 99.32 | 96.B0 | 95.23 | GT.05
VZ_MRS 93. 58(TC10), 92. 55(TC12, “t"), 92. 82 (TC12, “h") (Average 92.99)
VZ_Joint 92. 00(TC10), 91. 41 (TC12, “t"), 92. 06 (TC12, “h") (Average 91.82)
CJLBP_SMCL.,.. 99. T7(TC10), 98. 5B(TC1Z, “t"), 98. 68(TC1Z, “h") (Average 99.01)
LRIG! M,y a7. 73(TC10), 91. 69 (TC12, "), 95. 28(TC12, “h") (Average 94. 90)

4.2 Experimental results using the CUReT database

For the CUReT database, the same subset of images are used as the previous experiments in
[12], and 61 classes of textures are acquired from different perspectives and illumination
orientations (Fig. 9). Each of them had 92 samples. In the experiments, N (N = 46, 23, 12, 6)
images are randomly selected from each class for training and the remaining 92-N ones for test
set. Table 2 lists the results of our texture classification using our proposed descriptor and
other descriptors for comparison. Note that the results of VZ_MRS8, VZ Joint, and
CILBP_SMC{%.c475125 are obtained directly from the literature. Through the analysis in
Table 2, we obtained the following results:
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First, with the decrease in the number of training samples, the accuracy of the
classification will decrease. For example, the accuracy of CLBP_Sgy in N = 46 was 80.63%,
but when N = 6, it is reduced to 58.70%. Other descriptors produced similar results.

Second, similar to Table 1, the descriptor that is a combination of CLBP of different
block sizes significantly improved the classification accuracy. For instance, the accuracy of
SB;-CLBP_S;Y (91.49%) is higher than that of CLBP_S;{ (80.63%).

Third, our algorithm also improved the accuracy for the combination of CLBP_S,
CLBP_M and CLBP_C. For instance, when N = 46, the accuracy of SBs-CLBP_Si? /M2
(96.16%) is higher than that of CLBP_S;y /M5y (93.52%), and SBs-CLBP_S;¢ /M"uz IC
(96.98%) was better than CLBP_S;{/ M2/C (95. 59%)

Fig. 9. Sixth textures in the CUReT dataset

The classification accuracy of the descriptor that was a combination of CLBP of two
different block sizes was higher than that of the single block descriptor. For instance, when N
= 46, the accuracy of SBzs-CLBP_ SeZIMGEIC (97. 33%) was higher than SBz-CLBP_ SerIM
52 IC. With an increasing the number of different block sizes, the accuracy of classification can
be improved accordingly. For instance, when N = 46, the accuracy of SB.3.4-CLBP_S;?
/Mriu2 8,1/C (97.51%) was higher than SB,.s-CLBP_S§¥ /MY /C (97.33%), and
SBy43+4+5-CLBP_S? /M3y /C (97.76%) was higher than SBz+3+4-CLBP S"“2 M3 /C (97.51%).
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Table 2. The comparison results for CUReT datasets
(P, R)=(8,1} (F,RI=(16, 2) (F.RJ=(24, 3)
46 23 1z 3] 46 23 12 3] 46 23 12 6
80.63 T4, 81 67, 84 58. 70 86. 37 81.05 T4, 62 66,17 86. 37 81.21 T4, 71 66, 55

91. 49 86. B1 79. 87 70. 81 92. 42 87.71 B81.487 72.70 92. 57 88. 09 82. 08 T4, 00

93.10 88. 56 B2, 47 73. 64 94. 02 89,72 B3.83 Ta. 88 93.79 29. 58 283. 95 75, 88

94. 40 90. 22 84,52 8. 77 94. 67 90, 74 Bo.17 T7.03 94. 40 90. 22 284,52 .77

95. 36 91. 44 85,76 T7. 46 94. BT 91. 49 26,08 7797 94. 98 91. 31 85, 84 TT. T4

T8. 20 67. 96 60. 27 51. 49 35. 48 79.01 T1.2¢ 61. 59 82.16 6. 23 69,22 60. 45
86. 67 78.71 71.52 61. 62 90. B4 45,02 7731 67. 45 90. 85 85. 04 T7. 29 67. 40
88. 77 8z.02 74.15 64. 07 93.19 88,03 80,79 70.95 92. 65 87. 32 80. 35 T0. 65
90. 38 83. 94 75. 92 B5. 77 93. 06 39. 26 82. 32 T2.63 93. 47 88. 44 81.43 T1.91

91. 29 85. 26 T7. 48 B7. 30 94. 30 90. 08 83.18 73.78 93. 95 89. 08 B2. 24 72,37

83. 26 75. 58 B6. 91 56. 45 91.42 85. 73 8. 05 6E8. 14 89. 48 B3. 54 T5. 96 66, 41

89. 80 82. 85 T4, 06 B2. 93 93. 69 88. 33 B0.61 TO.14 93. 91 BE8. BT 81.53 T1.25

91. 60 84. 37 T6. 48 65, 24 95. 14 90. 44 83.21 73.10 95. 03 90. 67 83. 65 73.53

92.79 86, 41 T7.90 66. 90 95. 66 91. 28 B4, 21 T4 14 93, 49 91.15 284,23 T4. 67

93. 32 87. 27 78.92 62. 04 95. 64 91. 80 24,96 T4. 84 98, 77 91.49 284,83 8. 10

90. 34 84,52 T6. 42 66. 31 93. 87 89,05 B2.46 72,581 93. 22 28, 37 21, 44 T2. 01

94. T4 89. 66 82,34 TLTT 95, 57 91. 34 24,68 T4.88 93,79 91. 74 85,29 T6. 02
98. 32 90. 58 33,79 T3. 66 96. 36 92, 65 86. 45 T7. 15 96. 52 92.69 86. 84 TT. 65
96. 06 91. 86 84, 92 74,97 96. BO 93.18 87,34 TE. 34 96. 87 93. 33 87. 50 8. 07

96. 54 92. 49 85. 80 75. 97 96. 79 93. 72 87.91 TE. 94 97.09 93. 67 87. 81 9. 02

93. 52 83. BY 81. 95 72. 30 94. 45 90. 40 8417 TA. 39 93. 63 89,14 B2. 47 T3. 26

96. 16 92. 16 86. 20 77.05 95. 94 92, 22 B6. 50 7778 95. 85 92.18 B6. 38 TT. 46

96. B3 93.19 87.38 78. 27 96. 76 93. 30 B7.98 79.32 96. 28 92.73 87.16 8. 87

97. 06 93. 65 83.17 79. 32 97.19 93. 89 BE. 7T 80.13 96. B2 93. 26 87.82 9. 00

a7. 36 94. 03 88. 20 20. 06 97.11 94. 36 20.10 20,77 96. 91 93. 62 88. 09 79.82

95. 59 91. 35 B4, 92 T4. B0 95. 86 92.13 B6.15 TT. 04 94. T4 90. 33 83.82 T4, 46

96. 98 93. 43 a7.16 T7. 86 96. 73 93. 31 87,59 T8. 30 96. 56 93.11 87. 21 78.29
97.33 94. 07 38,20 79,03 97. 21 94. 07 o8 62 T9.78 96. 93 93. 64 88.11 79,23
97. 81 94. 31 88.72 79. 59 97. 44 94. 45 89,21 80.27 97. 06 93.89 88. 27 79.39
97.76 94. 76 89. 30 80. 39 97. 29 94. 60 89. 37 80. 64 96. 70 93. 47 88. 04 T9. 29

VZ MRS 97. 78 (46), 95. 03(23), 90. 48(12) , 82. 90(A)
VZ_Joint 97. 66 (46), 94, 58(23), 89, 40(12) , 81. 06(6)
CJLBP_SMC32prian 97. 51 (48), 94. 75(25), 89. 73(12) , 79.89(6)

4.3 Analysis of experimental results

As stated above, the LBP descriptor only extracts the sign value of the pixel while the CLBP
descriptor adds both magnitude and center information for feature extraction of texture.
Therefore, the CLBP descriptor is more accuracy than the LBP. Also, the quality of feature
extraction of texture mainly depends on the type of texture. Both gross and detailed
information are related to the accuracy of feature extraction. Therefore, the feature extraction
strategy based on the CLBP features of a scalable block size is implemented in this paper.
Through experiments, we find some texture images are able to be classified and recognized
correctly by extracting their SB-CLBP features while they fail only with LBP or CLBP feature
as shown in Fig 10 and Fig 11. In Fig 10, the testing image with category 10 is wrongly
recognized as category 16 because of their similar CLBP_S feature, i.e. LBP feature. However,
they can be classified correctly when the CLBP_S features of multiple block size are extracted,
such as the block sizes are set to 2, 3 and 4. Also, as shown in Fig 11, the more CLBP features
with multiple block sizes are used, the more accuracy classification and recognition can be
achieved.
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Fig. 11. Texture Classification with SB-CLBP_M/C

SBr.3-s—CLBP _Mj

5. Conclusion

In this paper, a novel texture descriptor based on the CLBP features of a scalable block size is
proposed for texture classification and recognition. SB-CLBP descriptor not only has
advantages as other LBP descriptors, such as simple calculations, the invariance of the light
and rotation angles, and the robustness of the noise, but also it extracts both coarse-grained and
detailed features of a texture image and therefore, it has a higher classification and recognition
accuracy. A complete strategy combining SB-CLBP feature extraction, machine leading and
SVM has implemented in this paper. Experiments based on two standard libraries of texture
classification have been completed and compared with the previous researches. The
experimental results shows that the proposed scheme with the SB-CLBP descriptor is indeed a
good approach in texture classification and recognition.
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