• Title/Summary/Keyword: features extraction

Search Result 1,462, Processing Time 0.027 seconds

Sequence driven features for prediction of subcellular localization of proteins

  • Kim, Jong-Kyoung;Bang, Sung-Yang;Choi, Seung-Jin
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.237-242
    • /
    • 2005
  • Predicting the cellular location of an unknown protein gives a valuable information for inferring the possible function of the protein. For more accurate prediction system, we need a good feature extraction method that transforms the raw sequence data into the numerical feature vector, minimizing information loss. In this paper, we propose new methods of extracting underlying features only from the sequence data by computing pairwise sequence alignment scores. In addition, we use composition based features to improve prediction accuracy. To construct an SVM ensemble from separately trained SVM classifiers, we propose specificity based weighted majority voting. The overall prediction accuracy evaluated by the 5-fold cross-validation reached 88.53% for the eukaryotic animal data set. By comparing the prediction accuracy of various feature extraction methods, we could get the biological insight on the location of targeting information. Our numerical experiments confirm that our new feature extraction methods are very useful for predicting subcellular localization of proteins.

  • PDF

Structural Quality Defect Discrimination Enhancement using Vertical Energy-based Wavelet Feature Generation (구조물의 품질 결함 변별력 증대를 위한 수직 에너지 기반의 웨이블릿 Feature 생성)

  • Kim, Joon-Seok;Jung, Uk
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.2
    • /
    • pp.36-44
    • /
    • 2008
  • In this paper a novel feature extraction and selection is carried out in order to improve the discriminating capability between healthy and damaged structure using vibration signals. Although many feature extraction and selection algorithms have been proposed for vibration signals, most proposed approaches don't consider the discriminating ability of features since they are usually in unsupervised manner. We proposed a novel feature extraction and selection algorithm selecting few wavelet coefficients with higher class discriminating capability for damage detection and class visualization. We applied three class separability measures to evaluate the features, i.e. T test statistics, divergence, and Bhattacharyya distance. Experiments with vibration signals from truss structure demonstrate that class separabilities are significantly enhanced using our proposed algorithm compared to other two algorithms with original time-based features and Fourier-based ones.

Sliced Profile-based Automatic Extraction of Machined Features from CSG Models (단면 재구성을 통한 CSG 모델의 기계가공부품 형상추출)

  • Lee, Young-Rai
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.1
    • /
    • pp.99-112
    • /
    • 1994
  • This paper describe the development of a systematic method of slicing solid parts based on a data structure called Sliced Profile Data Structure(SPDS). SPDS is an augmented polygon data structure that allows multiple layers of sliced profiles to be connected together. The method consists of five steps: (1) Selection of slicing directions, (2) Determination of slicing levels, (3) Creation of sliced profiles, (4) Connection of sliced profiles, and (5) Refinement. The presented method is aimed at enhancing the applicability of CSG for manufacturing by overcoming the problem of non-uniqueness and global nature. The SPDS-based method of feature extraction is suitable for recognizing broad scope of features with detailed information. The method is also suitable for identifying the global relationships among features and is capable of incorporating the context dependency of feature extraction.

  • PDF

A STUDY ON SPATIAL FEATURE EXTRACTION IN THE CLASSIFICATION OF HIGH RESOLUTIION SATELLITE IMAGERY

  • Han, You-Kyung;Kim, Hye-Jin;Choi, Jae-Wan;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.361-364
    • /
    • 2008
  • It is well known that combining spatial and spectral information can improve land use classification from satellite imagery. High spatial resolution classification has a limitation when only using the spectral information due to the complex spatial arrangement of features and spectral heterogeneity within each class. Therefore, extracting the spatial information is one of the most important steps in high resolution satellite image classification. In this paper, we propose a new spatial feature extraction method. The extracted features are integrated with spectral bands to improve overall classification accuracy. The classification is achieved by applying a Support Vector Machines classifier. In order to evaluate the proposed feature extraction method, we applied our approach to KOMPSAT-2 data and compared the result with the other methods.

  • PDF

A Novel Recognition Algorithm Based on Holder Coefficient Theory and Interval Gray Relation Classifier

  • Li, Jingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4573-4584
    • /
    • 2015
  • The traditional feature extraction algorithms for recognition of communication signals can hardly realize the balance between computational complexity and signals' interclass gathered degrees. They can hardly achieve high recognition rate at low SNR conditions. To solve this problem, a novel feature extraction algorithm based on Holder coefficient was proposed, which has the advantages of low computational complexity and good interclass gathered degree even at low SNR conditions. In this research, the selection methods of parameters and distribution properties of the extracted features regarding Holder coefficient theory were firstly explored, and then interval gray relation algorithm with improved adaptive weight was adopted to verify the effectiveness of the extracted features. Compared with traditional algorithms, the proposed algorithm can more accurately recognize signals at low SNR conditions. Simulation results show that Holder coefficient based features are stable and have good interclass gathered degree, and interval gray relation classifier with adaptive weight can achieve the recognition rate up to 87% even at the SNR of -5dB.

Ensemble convolutional neural networks for automatic fusion recognition of multi-platform radar emitters

  • Zhou, Zhiwen;Huang, Gaoming;Wang, Xuebao
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.750-759
    • /
    • 2019
  • Presently, the extraction of hand-crafted features is still the dominant method in radar emitter recognition. To solve the complicated problems of selection and updation of empirical features, we present a novel automatic feature extraction structure based on deep learning. In particular, a convolutional neural network (CNN) is adopted to extract high-level abstract representations from the time-frequency images of emitter signals. Thus, the redundant process of designing discriminative features can be avoided. Furthermore, to address the performance degradation of a single platform, we propose the construction of an ensemble learning-based architecture for multi-platform fusion recognition. Experimental results indicate that the proposed algorithms are feasible and effective, and they outperform other typical feature extraction and fusion recognition methods in terms of accuracy. Moreover, the proposed structure could be extended to other prevalent ensemble learning alternatives.

A Fast and Adaptive Feature Extraction Method for Textured Image Segmentation (Texture 영상 분할을 위한 고속 적응 특징 추출 방법)

  • 이정환;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.12
    • /
    • pp.1249-1265
    • /
    • 1991
  • In this paper, a fast and adaptive feature extraction algorithm for textured image segmentation is proposed. First, a conventional algorithm to extract the statistical texture features are described and we obtain the recursive equations from that conventional method and it is used for extraction of sevaral texture features. And also we propose the adaptive algorithm which extract the texture features. To evaluate the performance of proposed algorithm, we apply the proposed method to artificial texture images. From the results of computer simulation, the proposed method is superior to the conventional one.

  • PDF

A Comparison of Effective Feature Vectors for Speech Emotion Recognition (음성신호기반의 감정인식의 특징 벡터 비교)

  • Shin, Bo-Ra;Lee, Soek-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1364-1369
    • /
    • 2018
  • Speech emotion recognition, which aims to classify speaker's emotional states through speech signals, is one of the essential tasks for making Human-machine interaction (HMI) more natural and realistic. Voice expressions are one of the main information channels in interpersonal communication. However, existing speech emotion recognition technology has not achieved satisfactory performances, probably because of the lack of effective emotion-related features. This paper provides a survey on various features used for speech emotional recognition and discusses which features or which combinations of the features are valuable and meaningful for the emotional recognition classification. The main aim of this paper is to discuss and compare various approaches used for feature extraction and to propose a basis for extracting useful features in order to improve SER performance.

Laver Farm Feature Extraction From Landsat ETM+ Using Independent Component Analysis

  • Han J. G.;Yeon Y. K.;Chi K. H.;Hwang J. H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.359-362
    • /
    • 2004
  • In multi-dimensional image, ICA-based feature extraction algorithm, which is proposed in this paper, is for the purpose of detecting target feature about pixel assumed as a linear mixed spectrum sphere, which is consisted of each different type of material object (target feature and background feature) in spectrum sphere of reflectance of each pixel. Landsat ETM+ satellite image is consisted of multi-dimensional data structure and, there is target feature, which is purposed to extract and various background image is mixed. In this paper, in order to eliminate background features (tidal flat, seawater and etc) around target feature (laver farm) effectively, pixel spectrum sphere of target feature is projected onto the orthogonal spectrum sphere of background feature. The rest amount of spectrum sphere of target feature in the pixel can be presumed to remove spectrum sphere of background feature. In order to make sure the excellence of feature extraction method based on ICA, which is proposed in this paper, laver farm feature extraction from Landsat ETM+ satellite image is applied. Also, In the side of feature extraction accuracy and the noise level, which is still remaining not to remove after feature extraction, we have conducted a comparing test with traditionally most popular method, maximum-likelihood. As a consequence, the proposed method from this paper can effectively eliminate background features around mixed spectrum sphere to extract target feature. So, we found that it had excellent detection efficiency.

  • PDF

Extraction of Chord and Tempo from Polyphonic Music Using Sinusoidal Modeling

  • Kim, Do-Hyoung;Chung, Jae-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4E
    • /
    • pp.141-149
    • /
    • 2003
  • As music of digital form has been widely used, many people have been interested in the automatic extraction of natural information of music itself, such as key of a music, chord progression, melody progression, tempo, etc. Although some studies have been tried, consistent and reliable results of musical information extraction had not been achieved. In this paper, we propose a method to extract chord and tempo information from general polyphonic music signals. Chord can be expressed by combination of some musical notes and those notes also consist of some frequency components individually. Thus, it is necessary to analyze the frequency components included in musical signal for the extraction of chord information. In this study, we utilize a sinusoidal modeling, which uses sinusoids corresponding to frequencies of musical tones, and show reliable chord extraction results of sinusoidal modeling. We could also find that the tempo of music, which is the one of remarkable feature of music signal, interactively supports the chord extraction idea, if used together. The proposed scheme of musical feature extraction is able to be used in many application fields, such as digital music services using queries of musical features, the operation of music database, and music players mounting chord displaying function, etc.