• 제목/요약/키워드: features extraction

검색결과 1,480건 처리시간 0.08초

위성영상의 해상력에 따른 지리정보의 판독 - 판독가능성과 프랙탈 차원을 중심으로 (The Resolution Effects of the Satellite images on the Interpretability of Geographic Informations - Laying Emphasis on the Interpretability and the Fractal Dimension)

  • 김용일;서병준;구본철
    • 대한공간정보학회지
    • /
    • 제8권2호
    • /
    • pp.61-69
    • /
    • 2000
  • 최근까지 위성 영상을 이용한 지리정보의 추출은 기존의 항공사진과 비교하여 공간 해상력의 한계로 인하여 많은 제약조건들을 지니고 있었다. 그러나, 공간 해상력이 약 1m 정도인 고해상도 위성들의 발사 계획이 앞으로의 많은 활용가능성을 제시하고 있다 최근에는, 지리정보시스템을 구축하기 위해서 그 기반이 되는 기본도의 수치화사업이 진행되고 있다. 따라서, 본 연구에서는 다양한 위성 영상의 해상도에 따라 지리정보의 판독과 검출가능성을 시험해보았으며 실험을 통하여 서로 다른 해상력을 지닌 6개의 영상에 대해서 6개의 범주로 나눈 46가지의 지형지물에 대한 해석과 검출가능성을 시험하여 보았다. 그 다음으로, 우리는 질감 정보의 정확도 평가를 위해 프랙탈 분석법을 시행하였다. 또한, 프랙탈 분석법을 통해서, 영상의 공간해상력이 증가할수록 질감정보와 구분가능성이 증가하는 것을 알 수 있었다. 이러한 실험결과를 통해서 본 연구에서는 특정 대상물의 판독에 적절한 공간 해상력을 검토해 봄으로써 위성 영상을 이용한 지리정보시스템 데이터베이스의 갱신 및 구축의 가능성을 제시해보고자 하였다.

  • PDF

확장된 RNN을 활용한 사람재인식 시스템에 관한 연구 (A Study on Person Re-Identification System using Enhanced RNN)

  • 최석규;허문걸
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.15-23
    • /
    • 2017
  • 사람의 빈번한 자세 변화, 그리고 background clutter과 occlusion으로 인해 Person Re-identificatio는 컴퓨터 비전 분야에서 가장 어려운 부분이다. 비겹침 카메라의 이미지는 어떤 사람을 다른 사람과 구별하기 어렵게 한다. 더욱 나은 성능 일치를 달성하기 위해 대부분의 방법은 특징 선택과 거리 메트릭을 개별적으로 사용한다. 그렇게 차별화된 표현과 적절한 거리를 얻을 수 있고, 사람과 중요한 특징의 무시 사이의 유사성을 설명할 수 있다. 이러한 상황은 우리가 이 문제를 다루는 새로운 방법을 고려하도록 한다. 본 논문에서는 Person Re-identification를 위한 3단 계층네트워크를 갖는 향상되고 반복적인 신경 회로망을 제안하였다. 특히 RNN(Revurrent Neural Network) 모델은 반복적인 EM(Expectation Maximum) 알고리즘과 3단 계층 네트워크를 포함하고, 차별적 특징과 지표 거리를 공동으로 학습한다. 반복적인 EM 알고리즘은 RNN 이전에 연속해 있는 CNN(Convoutional Neural Network)의 특징 추출 능력을 충분히 사용할 수 있다. 자율 학습을 통해 EM 프레임 워크는 패치의 레이블을 변경하고 더 큰 데이터 세트를 훈련할 수 있다. 네트워크를 더 잘 훈련시키기 위해 3단 계층 네트워크를 통해 CNN, RNN 및 풀링 계층이 공동으로 특징 추출을 할 수 있다. 실험 결과에 따르면 비전처리 분야에서 다른 연구자의 접근 방식과 비교할 때 이 방법은 경쟁력 있는 정확도를 얻을 수 있다. 이 방법에 대한 다른 요소의 영향은 향후 연구에서 분석되고 평가될 것이다.

변화지역 탐지를 위한 시계열 KOMPSAT-2 다중분광 영상의 MAD 기반 상대복사 보정에 관한 연구 (A Study on Object Based Image Analysis Methods for Land Use and Land Cover Classification in Agricultural Areas)

  • 염종민;김현옥;윤보열
    • 한국지리정보학회지
    • /
    • 제15권3호
    • /
    • pp.66-80
    • /
    • 2012
  • 원격탐사 방법을 활용한 변화지역 탐지, 재난재해 지도 작성, 작황 모니터링 등 다중시기의 위성영상을 활용한 결과를 도출하기 위해서는 시계열 영상 정보를 서로 비교할 수 있는 공통의 스케일로 정규화 하는 것이 필요하다. 다중시기 영상에 대한 정규화 방법은 절대복사보정과 상대복사 보정으로 나눌 수 있으며, 본 연구에서는 상대복사 보정을 통한 시계열 위성영상처리 기법을 다루고자 한다. 2011년 3월 해일 피해가 발생했던 일본 센다이 지역을 연구대상지로 선정하였고, KOMPSAT-2 다중분광영상을 이용한 사고 전, 후의 피해지역 탐지에 있어 상대복사 보정의 실효성을 분석하였다. 다양한 상대복사 보정 기법 중에서 정준상관분석을 통해 PIFs(Pseudo Invariant Features) 지역을 자동으로 추출하는 MAD(Multivariate Alteration Detection) 기법을 적용하였다. 본 사례연구 분석결과 MAD 방식에 의한 자동 PIFs 지역의 추출은 비교적 높은 정확도 수준에서 이루어짐을 확인할 수 있었으며, 상대복사 보정된 시계열 위성영상을 사용함으로써 변화지역 자동탐지의 신뢰수준을 높일 수 있는 것으로 나타났다.

암석분광반사율 특성을 이용한 납석 광화대 추출 (Extraction of Pyrophyllite Mineralized Zone using Characteristics of Spectral Reflectance of Rock Samples)

  • 지광훈;이홍진
    • 대한원격탐사학회지
    • /
    • 제23권6호
    • /
    • pp.493-500
    • /
    • 2007
  • 일반적으로 분광측정을 수행함에 있어서 측정 대상물, 측정 방법, 측정 조건 등에 따라서 측정 결과가 상이하게 나타난다. 본 연구에서는 광물 및 암석 샘플의 전처리, 센서와 대상물과의 거리에 대한 표준화 방법을 제시하고, 납석의 분광특성 연구를 수행하였다. 광물, 암석 샘플의 크기는 노두의 규모와 상태에 따라서 다양하기 때문에 샘플과 센서간의 거리를 일정하게 유지하는 것이 중요하다. 표준화를 수행하기 전에 동일한 암석(석영반암)에 대해서 자연석, 자갈, 분말 그리고 절단암 등 다양한 샘플을 준비하였다. 샘플의 표면 상태와 그림자의 영향을 최소화하고 정량적인 분석을 위하여 센서와 샘플간의 거리를 30cm로 유지하고 $1{\sim}2cm$ 두께의 절단암을 3회 반복 측정하였다. 제안된 방법을 검증하기 위해서 납석에 대한 사례 연구를 수행하였다. 본 연구결과에 따르면 납석은 1.406nm, 1,868nm, 2.180nm 그리고 2.180nm 파장대역에서 강한 흡수 양상을 보이며, 특히 1.406nm와 2.180nm 파장대역에서 강한 흡수가 일어난다. 이러한 흡수 특징은 Landsat TM 영상의 밴드 7과 ASTER 영상의 밴드 8과 일치한다. 따라서, 이러한 결과를 이용하여 육안으로 구분되지 않은 다른 대상물(나지, 주차장, 채석장 등)과 납석 광산을 구분할 수 있다.

진동 데이터의 시간영역 특징 추출에 기반한 고장 분류 모델 (Fault Classification Model Based on Time Domain Feature Extraction of Vibration Data)

  • 김승일;노유정;강영진;박선화;안병하
    • 한국전산구조공학회논문집
    • /
    • 제34권1호
    • /
    • pp.25-33
    • /
    • 2021
  • 머신러닝 기법의 발달과 함께 기계에서 발생하는 다양한 종류(진동, 온도, 유량 등)의 데이터를 활용하여 기계의 상태를 진단하고 이상 탐지 및 비정상 분류 연구도 활발히 진행되고 있다. 특히 진동 데이터를 활용한 회전 기계의 상태 진단은 전통적인 기계 상태 모니터링 분야로 오랜 기간 동안 연구가 진행되었고, 연구 방법 또한 매우 다양하다. 본 연구에서는 가정용 에어컨에 사용되는 로터리 압축기에 가속도계를 직접 설치하여 진동 데이터를 수집하는 실험을 진행하였다. 데이터 부족 문제를 해결하기 위해 데이터 분할을 수행하였으며, 시간 영역에서의 진동 데이터로부터 통계적, 물리적 특징들을 추출한 후, Chi-square 검증을 통해 고장 분류 모델의 주요 특징을 추출하였다. SVM(Support Vector Machine) 모델은 압축기의 정상 혹은 이상 유무를 분류하기 위해 개발되었으며, 파라미터 최적화를 통해 분류 정확도를 개선하였다.

딥러닝 기반의 Multi Scale Attention을 적용한 개선된 Pyramid Scene Parsing Network (Modified Pyramid Scene Parsing Network with Deep Learning based Multi Scale Attention)

  • 김준혁;이상훈;한현호
    • 한국융합학회논문지
    • /
    • 제12권11호
    • /
    • pp.45-51
    • /
    • 2021
  • 딥러닝의 발전으로 인하여 의미론적 분할 방법은 다양한 분야에서 연구되고 있다. 의료 영상 분석과 같이 정확성을 요구하는 분야에서 분할 정확도가 떨어지는 문제가 있다. 본 논문은 의미론적 분할 시 특징 손실을 최소화하기 위해 딥러닝 기반 분할 방법인 PSPNet을 개선하였다. 기존 딥러닝 기반의 분할 방법은 특징 추출 및 압축 과정에서 해상도가 낮아져 객체에 대한 특징 손실이 발생한다. 이러한 손실로 윤곽선이나 객체 내부 정보에 손실이 발생하여 객체 분류 시 정확도가 낮아지는 문제가 있다. 이러한 문제를 해결하기 위해 의미론적 분할 모델인 PSPNet을 개선하였다. 기존 PSPNet에 제안하는 multi scale attention을 추가하여 객체의 특징 손실을 방지하였다. 기존 PPM 모듈에 attention 방법을 적용하여 특징 정제 과정을 수행하였다. 불필요한 특징 정보를 억제함으로써 윤곽선 및 질감 정보가 개선되었다. 제안하는 방법은 Cityscapes 데이터 셋으로 학습하였으며, 정량적 평가를 위해 분할 지표인 MIoU를 사용하였다. 실험을 통해 기존 PSPNet 대비 분할 정확도가 약 1.5% 향상되었다.

기계학습 분석을 위한 차원 확장과 차원 축소가 적용된 지진 카탈로그 (Application of Dimensional Expansion and Reduction to Earthquake Catalog for Machine Learning Analysis)

  • 장진수;소병달
    • 지질공학
    • /
    • 제32권3호
    • /
    • pp.377-388
    • /
    • 2022
  • 최근, 다수의 연구가 지수적으로 증가하는 지진 자료를 효율적이고 정확하게 처리하기 위해 기계학습을 활용하고 있다. 본 연구는 지진의 발생 시간, 위치, 규모의 정보를 확장하여 기계학습에 적용 가능한 자료를 제작한 후, 주성분 분석을 통해 추출한 자료의 주요 성분으로 자료의 차원을 축소하였다. 차원이 확장된 자료는 36,699개의 지진 사건을 포함하는 Global Centroid Moment Tensor 카탈로그로부터 얻은 지진 정보의 통계량으로 구성되었다. 표준화와 최대-최소화 스케일링을 활용하여 자료 전처리를 수행하였으며, 스케일링이 완료된 자료에 주성분 분석을 적용하여 자료의 주요 특징을 추출하였다. 스케일링은 상이한 단위로 인한 특징 값의 차이를 현저히 감소시켰으며, 그 중 표준화는 다른 전처리에 비해서 각 특징의 중앙값을 더 균등하게 변환하였다. 주성분 분석이 스케일링이 적용되지 않은 자료로부터 추출한 여섯 개의 주성분은 원본 자료의 정보를 99% 설명하였다. 표준화와 최대-최소 스케일링이 적용된 자료로부터 추출한 열여섯 개의 주성분은 원본 자료의 정보의 98%를 재구성하였다. 이는 특징 값의 분포가 균등한 자료의 정보를 보존하기 위해서는 더 많은 주성분이 필요함을 지시한다. 본 연구는 지진 데이터와 지진 거동과의 관계를 분석하는 효율적이고 정확한 기계 학습 모형을 훈련시키기 위한 데이터 처리 방법을 제안하였다.

다중 공간정보 데이터의 점진적 조합에 의한 의미적 분류 딥러닝 모델 학습 성능 분석 (Training Performance Analysis of Semantic Segmentation Deep Learning Model by Progressive Combining Multi-modal Spatial Information Datasets)

  • 이대건;신영하;이동천
    • 한국측량학회지
    • /
    • 제40권2호
    • /
    • pp.91-108
    • /
    • 2022
  • 대부분의 경우 광학 RGB 영상을 딥러닝(DL: Deep learning)의 학습 데이터로 사용하여 객체탐지, 인식, 식별, 분류, 의미적 분할 및 객체 분할 등을 수행하지만, 실세계의 3차원 객체들을 2차원 영상으로 완전하게 파악하는 것은 한계가 있다. 그러므로 대표적인 3차원 지형 공간정보인 수치표면모델(DSM: Digital Surface Model)과 더불어 DSM에 내재된 특성정보를 이용하여 3차원 지형지물을 분석하는 것이 효과적이다. 건물과 같이 기하학적으로 정형화된 형태의 인공구조물은 3차원 공간데이터로부터 얻을 수 있는 기하학적 요소와 특성을 이용하여 객체의 분류와 형상 묘사가 가능하다. 이 연구는 고차원 시각정보(high-level visual information) 시스템에서 중요한 역할을 하는 내재된 고유의 특성정보(intrinsic information)를 기반으로 하며, 이를 위하여 객체의 기하학적 요소인 경사와 주향을 DSM으로부터 도출하고, 다방향에서 생성한 음영기복영상(SRI: Shaded Relief Image)과 함께 DL 모델의 학습 수행에 사용하였다. 실험은 ISPRS (International Society for Photogrammetry and Remote Sensing)에서 제공하는 데이터 셋 중에서 DSM과 레이블 데이터를 객체의 의미적 분류를 위해 개발된 합성곱 기반의 SegNet 학습에 사용하였다. 지형지물을 분류하고 분류 결과를 이용하여 건물을 추출하였다. 특히 DL 모델의 학습 성능 향상을 위해 학습 데이터의 여러 조합에 따른 시너지 효과를 분석하는 것에 핵심이다. 제안한 방법은 건물 분류와 추출에 효과적임을 보여주고 있다.

Application of peak based-Bayesian statistical method for isotope identification and categorization of depleted, natural and low enriched uranium measured by LaBr3:Ce scintillation detector

  • Haluk Yucel;Selin Saatci Tuzuner;Charles Massey
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3913-3923
    • /
    • 2023
  • Todays, medium energy resolution detectors are preferably used in radioisotope identification devices(RID) in nuclear and radioactive material categorization. However, there is still a need to develop or enhance « automated identifiers » for the useful RID algorithms. To decide whether any material is SNM or NORM, a key parameter is the better energy resolution of the detector. Although masking, shielding and gain shift/stabilization and other affecting parameters on site are also important for successful operations, the suitability of the RID algorithm is also a critical point to enhance the identification reliability while extracting the features from the spectral analysis. In this study, a RID algorithm based on Bayesian statistical method has been modified for medium energy resolution detectors and applied to the uranium gamma-ray spectra taken by a LaBr3:Ce detector. The present Bayesian RID algorithm covers up to 2000 keV energy range. It uses the peak centroids, the peak areas from the measured gamma-ray spectra. The extraction features are derived from the peak-based Bayesian classifiers to estimate a posterior probability for each isotope in the ANSI library. The program operations were tested under a MATLAB platform. The present peak based Bayesian RID algorithm was validated by using single isotopes(241Am, 57Co, 137Cs, 54Mn, 60Co), and then applied to five standard nuclear materials(0.32-4.51% at.235U), as well as natural U- and Th-ores. The ID performance of the RID algorithm was quantified in terms of F-score for each isotope. The posterior probability is calculated to be 54.5-74.4% for 238U and 4.7-10.5% for 235U in EC-NRM171 uranium materials. For the case of the more complex gamma-ray spectra from CRMs, the total scoring (ST) method was preferred for its ID performance evaluation. It was shown that the present peak based Bayesian RID algorithm can be applied to identify 235U and 238U isotopes in LEU or natural U-Th samples if a medium energy resolution detector is was in the measurements.

수체 추출을 위한 Geo-SAM 기법의 응용: 국토위성영상 적용 실험 (Application of Geo-Segment Anything Model (SAM) Scheme to Water Body Segmentation: An Experiment Study Using CAS500-1 Images)

  • 이하영;김광섭;이기원
    • 대한원격탐사학회지
    • /
    • 제40권4호
    • /
    • pp.343-350
    • /
    • 2024
  • Meta에서 신속한 영상 분할 기능을 제공하는 대규모 컴퓨터 비전 생성 모델을 발표한 이후, 여러 활용 분야에서 이를 적용하려는 연구가 이루어지고 있다. 이 연구에서는 위성 영상 자료에 Segment Anything Model (SAM)을 사용할 수 있는 QGIS 플러그인 Geo-SAM을 사용하여 수체 객체 탐지와 추출에 대한 SAM의 적용성을 조사해 보고자 하였다. 실험 대상 자료는 국토위성(Compact Advanced Satellite 500, CAS500-1) 영상을 사용하였다. 이 자료를 가지고 SAM을 적용하여 얻은 결과는 같은 입력 영상으로부터 수작업으로 제작한 수체 객체 자료, Open Street Map (OSM)의 수체 자료, 국토지리정보원의 수계 수치지도와 비교하였다. SAM 처리 결과와 비교 대상 자료를 이용하여 추출된 모든 객체를 대상으로 계산한 경계사각형의 교집합/합집합의 평균값을 나타내는 mean Intersection over Union (mIoU)은 각각 0.7490, 0.5905, 0.4921로 나타났고, 각 자료에서 공통으로 나타나거나 추출된 객체에 대해 계산한 결과는 차례대로 0.9189, 0.8779, 0.7715로 나타났다. SAM을 적용한 결과와 다른 비교 자료와의 공간적 일치도를 분석한 결과, SAM에서는 한 개의 수체 객체를 여러 개의 분할 요소로 나타내므로 수체 객체 분류를 지원하는 의미 있는 결과를 보이고 있음을 알 수 있다.