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a b s t r a c t

Todays, medium energy resolution detectors are preferably used in radioisotope identification devi-
ces(RID) in nuclear and radioactive material categorization. However, there is still a need to develop or
enhance « automated identifiers » for the useful RID algorithms. To decide whether any material is SNM
or NORM, a key parameter is the better energy resolution of the detector. Although masking, shielding
and gain shift/stabilization and other affecting parameters on site are also important for successful
operations, the suitability of the RID algorithm is also a critical point to enhance the identification
reliability while extracting the features from the spectral analysis. In this study, a RID algorithm based on
Bayesian statistical method has been modified for medium energy resolution detectors and applied to
the uranium gamma-ray spectra taken by a LaBr3:Ce detector. The present Bayesian RID algorithm covers
up to 2000 keV energy range. It uses the peak centroids, the peak areas from the measured gamma-ray
spectra. The extraction features are derived from the peak-based Bayesian classifiers to estimate a
posterior probability for each isotope in the ANSI library. The program operations were tested under a
MATLAB platform.

The present peak based Bayesian RID algorithm was validated by using single isotopes(241Am, 57Co,
137Cs, 54Mn, 60Co), and then applied to five standard nuclear materials(0.32e4.51% at.235U), as well as
natural U- and Th-ores. The ID performance of the RID algorithm was quantified in terms of F-score for
each isotope. The posterior probability is calculated to be 54.5e74.4% for 238U and 4.7e10.5% for 235U in
EC-NRM171 uranium materials. For the case of the more complex gamma-ray spectra from CRMs, the
total scoring (ST) method was preferred for its ID performance evaluation. It was shown that the present
peak based Bayesian RID algorithm can be applied to identify 235U and 238U isotopes in LEU or natural U
eTh samples if a medium energy resolution detector is was in the measurements.
© 2023 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Todays, the concepts of nuclear security and nuclear safety have
gained great importance due to emerging nuclear security threats.
In particular, it is known that malicious use of dirty bombs or nu-
clear materials can directly threaten the health and security of
public.

For nuclear security purposes, hand-held radioisotope identi-
fiers (RIDs) are commonly used to characterize nuclear materials
el).

by Elsevier Korea LLC. This is an
(NMs) including (SNM, RGPu, WGPu, 237Np, etc.), NORMs/TEN-
ORMs, other radioactive materials (RMs) or medical and industrial
radioisotopes. Many RIDs have already been deployed by Interna-
tional Atomic Energy Agency (IAEA) and other public authorities to
facilitate the detection of threats, tracking radioactive material
transportation by following primary inspections through radiation
portal monitors (RPMs). Radioisotope Identification Devices (RID)
can be used for searching, radioisotope categorization and local-
izing radioactive sources, and also simultaneously for making
gamma dose rate measurements, and optionally indicating the
neutron count/dose rate if it has neutron detector. The identifica-
tion/categorization of radioactive or nuclear materials concealed in
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cargoes is always a fundamental issue in nuclear security to prevent
illicit trafficking of nuclear and radioactive materials. In this
context, gamma-ray spectroscopy is a critical research and devel-
opment priority to arrange of nuclear security missions, specifically
the interdiction of special nuclear material involving the detection
and identification of gamma-ray emitting sources [1]. To achieve
these tasks, RIDs can be operated as gamma spectrometers to
identify certain user defined radioisotopes. Basically, the gamma
radiation spectra are compared with gamma lines or reference
spectra of frequently observed radioisotopes and identified if sta-
tistically significant counting is achieved [2] [IAEA NSS6, 2007].
This implies that RIDs should be more effective and reliable in the
field as a secondary inspection devices. Up to now, the majority of
RIDs deployed in the field are based on the low energy resolution
NaI(Tl) detector based devices and their performance for isotope
identification has been well-documented. However, in practice,
RIDS are mostly by the first responders or FLOs(Front-Line-
Officiers) instead a trained spectroscopist who might capable of
identifying complicated, multiple-line sources with even the
poorest resolution detectors such as NaI(Tl) [3]. This is true that
there are still some inabilities of the commercially available RID
devices in view of correctly identifying isotopes. Todays, it is a fact
that most of RIDs still use low energy resolution detectors since
they have higher efficient and relatively lower cost NaI(Tl) scintil-
lation detectors. Therefore, they do not also need to use sophisti-
cated isotope identification algorithms [4]. This is a main drawback
of NaI(Tl) detector due to worse energy resolution, Additionally,
NaI(Tl) scintillation detectors also have gain shift/stability of tem-
perature dependency in view of isotope identification performance.
On the other hand, in recent years, with advancement of new de-
tector technology, medium energy resolution detectors such as
LaBr3:Ce, CeBr and CdZnTe detectors allow new alternative isotope
identification improvements due to their much better energy res-
olution and having a more linear energy response over a wide
energy range of up to 2000 keV. Hence, especially medium energy
resolution detectors are increasingly used for RIDs in nuclear ma-
terial detection and radioisotope categorization. This implies that
improving the energy resolution of any detector also needs to use
for a more sophisticated RID algorithm rather than that of NaI(Tl)
detectors. For instance, in the literature, some statistical methods,
such as Bayesian Modelling Averaging and hierarchical and
empirical Bayesianmethods, might reduce the decision uncertainty
on identification accuracy of any isotope in a nuclear/radioactive
material [1]. If a medium energy resolution detector is used for
isotope identification purpose in a conventional RID algorithms,
there seems to be another problem that is related to be used
“automated identifiers”. At this point, the literature survey implies
that there is much room for improvement in the RID algorithms
themselves even when automated algorithms fail [3]. Further, the
performance of the current automated RID algorithms does not
generally meet the requirements of the users nor the ANSI 42.34
standard [5e8]. Therefore, new algorithms are still ongoing in this
field to enhance the capability of RIDs to allow more accurate
isotope identification. Since RID algorithms provides the quantita-
tive information from the spectral data, the extraction features on
what isotopes are present andwhat type of radioactivematerial can
be categorized from the inspected items can be provided through
these RID algorithms in which either use all energy channels in the
analysis region(ROI) or only energy channels in and near identified
peaks [1]. However, in real situation, it is a fact that unknown
shielding, isotope masking, low-count spectra, calibration drift, and
other effects complicate the radioisotope identification process,
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often leading to an incorrect isotope identification (ID) or
categorization.

Themain aim of this study is to modify a RID algorithm based on
Bayesian statistics approach, first time developed by Stinnet [12,23]
which can also be used for identification of uranium isotopes(235U,
238U) for SNM categorization from natural, depleted and low
enriched uraniummaterials if a medium energy resolution detector
is employed. The present RID algorithm uses both peak positions
(centroids) and peak areas (ROI-Region of Interest) from the
measured gamma-ray spectrum. To identify any radioisotope, the
proposed Bayesian peak based RID algorithm was validated by
means of single isotopes-gamma-ray spectra acquired with a LaB-
r3:Ce detector in which we firstly optimized an energy tolerance of
ED ¼ ±5 keV which is the difference between the measured peak
energy and the peak energy specified in the isotope library. The
modified Bayesian peak based-RID algorithm was tested up to
2000 keV energy range. To achieve this, the nergy and shape cali-
brations were already performed at a given shielding condition.
This new RID algorithmwas first time applied to the more complex
gamma-ray spectra obtained from five EC-NRM171 samples con-
taining depleted uranium(DU), natural uranium(NU) and low
enriched uranium(LEU) and other some Certified Reference Mate-
rials(CRMs) containing U and Th decay products. The measured
gamma-ray spectra from the above mentioned nuclear materials
were used to establish « automated identifiers» in the proposed RID
algorithm to decide whether the material are radioactive/nuclear
characteristic or SNM in view of radioisotope categorization.

2. Measurements and isotope identification method

2.1. Experimental

In this study, a 38.1 mm � 38.1 mm LaBr3:Ce scintillation de-
tector (BrilLanCe 380) crystal purchased from Saint Gobain Crys-
tals(SGC) was used. SGC BrilLanCe 380 (LaBr3:Ce) crystal coupled
directly to a specially selected photomultiplier tube (PMT) in sealed
housing.The technical specifications of the detector as well as its
energy resolution of 17.1 keV (2.59%) at 662 keV, and the relative
efficiency value is 15.4% at 25 cm source-to-detector distance,
relative to 3 inch � 3 inch NaI for 1332.5 keV (60Co). For data
acquisition, a 2048 spectrum channels was used through Canberra
Multiport II 16K ADC/MCA supported by [11] Genie 2000 Gamma
Software.

In themeasurement setup, the detector sidewas shieldedwith a
5 cm thick lead to reduce ambient background and then it was
adjusted gain to cover up to 2000 keV energy range. The detector
was calibrated in terms of energy and peak shape (in FWHM) using
single isotope energies. As shown in Fig. 1, the measurements were
carried out at a 5 cm, 15 cm and 25 cm distance from LaBr3:Ce
scintillation detector to observe the effect of counting statistics on
the posterior probability for the isotopes such as 235U. The mea-
surement periods were chosen from 30s to 900s.

The certified uranium samples was pressed in an Al-can, back
plugged with an sealed Al-cylinder as shown in Fig. 2(a). In order to
prepare additional samples, a similar sample filling method was
also employed to obtain the same apparent density at the sample
height (Hs ¼ 2.11 cm) and inside diameter (Ds ¼ 6.6 cm) and
d ¼ 1 mm thin Al-window. Each aluminium can was fabricated in a
CNCmachine from grade 6061 aluminium-alloy complyingwith EN
573-3 (which is equivalent to ASTM 6061-T6 aluminium alloy), as
shown in Fig. 2(b). The powder forms were pressed in each of cy-
lindrical aluminium cans for filling CRMs minerals, purchased from



Fig. 1. A gamma-ray measuring system with LaBr3:Ce scintillation detector setup in a test rig.

Fig. 2. EC NRM 171 Nuclear reference uranium samples and sample filling in aluminium cans.
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Natural Resources Canada (NRCan) containing U-and Th-ores. For
instance, CUP-2 certified uranium ore concentrate contains
75.42 ± 0.17% wt. U, BL-5 low-grade concentrate contains
7.09 ± 0.03 %wt. U, and OKA-2 Rare-Earth e Thorium Ore contains
2.893 ± 0.058 wt%Th and 218.6 ± 8.2 mg/g U [12]. 235U isotopic
abundances in EC NRM 171 standard uraniummaterials are given in
Table 1.
2.2. Radioisotope identification algorithm

For automated radio isotope identification(RID), the RID algo-
rithms can broadly be classified into several groups:

� Library comparisons,
� Region of interest (ROI) methods,
� Template matching,
� Expert interaction [14,15]
Table 1
235Uranium isotopic abundances in EC NRM 171-standard nuclear materials [13].

Certified Reference Material Isotopic Abundance in atom %

Code 235U/U 238U/U

EC-NRM171-031 0.3205 ± 0.0002 99.662
EC-NRM171-071 0.7209 ± 0.0005 99.273
EC-NRM171-194 1.9664 ± 0.0014 98.015
EC-NRM171-295 2.9857 ± 0.0021 96.982
EC-NRM171-446 4.5168 ± 0.0032 95.439

*Data is provided by EC nuclear referencematerial EC NRM 171 certification report(No: EU
spectrometry.
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ID algorithms used in commercial detector devices are generally
proprietary knowledge, only a few of these are practical for use on a
RID device. Many algorithms for IDmust first employ a peak finding
method to quantify the centroid energy and possibly the area of all
photopeaks in a spectrum. Bayesian statistics based algorithm has
also developed for low energy resolution NaI detector in which it
utilizes peak energies and peak areas to compute the posterior
probabilities for each isotope given in adapted library that includes
the isotopes of ANSI 42.34, and additional ones such as 226Ra,
232Th day products [17]. In the present developed algorithm,
several steps were conducted as follows:

d Creating a library data base (SNM,Medical, Industrial, NORM,
etc.), where based on ANSI library

d Energy calibration of detector, such as a quadratic function:
EðkeVÞ ¼ aþ b � X þ c � X2 , where X is channel
Isotopic Abundance in weight %

235U/U 238U/U

7 ± 0.0004 0.3166 ± 0.0002 99.6668 ± 0.0004
8 ± 0.0002 0.7119 ± 0.0005 99.2828 ± 0.0002
9 ± 0.0009 1.9420 ± 0.0014 98.0406 ± 0.0009
6 ± 0.0015 2.9492 ± 0.0021 97.0196 ± 0.0015
8 ± 0.0016 4.4623 ± 0.0032 95.4950 ± 0.0016

R 10503 EN) -235Uranium isotope abundance certified referencematerial for gamma
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d Peak shape calibration of detector, such as root square of
energy: FWHM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ b � Ep
, where FWHM is full width at

half-maximum of the peak and E is the gamma-ray energy.
d Finding peak centroids from photopeaks in the acquired

spectrum
d Compare the centroid with library and matching with the

peak energy of isotope in the library
d Finding peak area in relevant ROI
d Calculation posterior probabilities by Bayesian Approach
d Scoring Iindex model, F-score(harmonic mean) or ST-Total

scoring model
d Identification of radioisotopes
d Reporting.

Since the presently developed RIID algorithm is based on both
peak centroids and the peak areas of the relevant peaks for isotope
identification, the determination of net peak area that under the
photopeak in the measured gamma-ray spectrum is a very impor-
tant step. This is because the net peak area provides the most
quantitative information to estimate the posterior probability of
the interested isotope. In order to determine net peak area in the
region of interest (ROI), a simple but most practical method called-
Covell method have been chosen and employed in this algorithm.
The Compton continuity under the peak is calculated by using a
linear background subtraction manner as follows:

A¼
XU
i¼L

Ci �
n

" PL�1

i¼L�m
Ci �

PUþ1

i¼Uþm
Ci

#

2m
(1)

where, A is net peak area. Ci are counts in the ith channel. L and U
are left and right edge channel of peak. m is channel wide. n is the
number of channels in the peak region [17], where m and n are
adjustable parameters.

The net count of peaks must be above certain limits in order to
be considered statistically significant. These limits are known as
critical limit, upper limit, detection limit and decision limit. In order
to calculate the critical limit, the confidence limit was chosen as
95%. The algorithm developed using these limits can identify sig-
nificant peaks in the spectra for single andmultiple isotopes, where
those details are not given to save space because they are well
described in text books[17] as well as other instruction manuals of
the most common commercial softwares such as Genie 2000 and
GammaVision.
2.3. Bayesian based isotope identification

The Bayesian statistics method based on Thomas Bayes’ theorem
is used in many applications and researches. This method is pre-
sented as an alternative to classical statistics approaches. For this
reason, it has also been called “Inverse Probability” by some sci-
entists [6]. In Bayesian statistics approach, the probability of an
event can be determined by bringing together different sources of
information within a certain methodology [18]. Bayesian statistical
methods predict that a particular parameter M, such as an isotope
responsible for a given data set, would be considered unknown but
fixed by a frequentist, in a Bayesian view something is known about
it [18]. Before taking any data, a prior distribution P(M) contains any
a priori knowledge and assumptions about the tested parame-
ter(M) and (D), data obtained related to parameter M. In the case of
isotope identification, we adopt that a spectrum is produced by a
radioactive isotope that must be in our spectral library. If the
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gamma-lines of the isotope do not match mostly to those of isotope
in the library, then misidentification would be an inevitable result.
Hence, the simple form of Bayes theorem on which Bayesian sta-
tistical approach is based is given by the following Eq. (2) [9,20].

PðMjDÞ ¼ PðDjMÞ$PðMÞ
PðDÞ (2)

where P(M|D) is posterior probability, P(D|M) is likelihood function,
P(M) is prior probability and P(D) is the normalization factor.

For the likelihood function P(D|M), there is a model based on
four parameters [9]. This pattern depends on the position of the
peak (fPP), the percentage of peaks matching with the data in the
library (fLPI), the percentage of identification of the data peaks (fDPI),
and the peak area (fAR):

PðDjMÞ ¼ fLPI$fDPI$fPP$fAR (3)

where, fLPI is the ratio of the sum of the gamma emission proba-
bilities of the defined library peaks to the sum of the gamma
emission probabilities of all the peaks of the relevant radioisotope
in the library. fDPI is estimated from the ratio of the peaks defined
for a particular isotope to the number of all data peaks defined in
the spectrum.

The fPP parameter is a parameter that depends on the peak
position. This parameter is determined by the difference between
the energy of the peak obtained from the spectrum (ED) and the
energy that matches that energy in the library (EL). This parameter
is important for the correct identification of peaks in possible peak
shifts. The fPP parameter is expressed by a function dependent on
the cos2 (x).

fPPðEDÞ ¼

8><
>:

bþ ð1� bÞcos2
�
p

2
$
ED � EL

w

�
ED � EL <w

b ED � EL � w

(4)

where, b is a decreasing function with energy as follows:

b ¼ 0:3�
�
0:2$

ED
2000

�

cosðxÞ ¼ p

2
$
ED � EL

w

The maximum energy that can be detected in scintillation de-
tectors might be chosen more higher energies than 2000 keV,
however, we tested that 2000 keV energy range is experimentally.
This is a reasonable value for a 38.1mmx38.1 mm LaBr3:Ce scintil-
lation detector because the energy response is quite linear up to
2000 keV. Moreover, most of gamma lines below 2000 keV can
easily be present in standard isotope libraries available in the
commercial softwares for RIDs. Energy tolerance (w) is expressed in
Eq. (5). In case of peak shifts, the energy of the peak of interest in
the spectrum is considered valid in the range ED ±w. For a 38.1mm
x 38.1 mm LaBr3:Ce scintillation detector, we experimentally set
the energy matching as a 5 keV between ED and EL and thus the
energy tolerance width can be estimated by the following proposed
equation:

w¼5þ ED
2000

x 5 (5)

The last parameter in the Bayesian statistical model, fAR, repre-
sents the effect of shielding conditions on the likelihood function.
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This parameter is calculated by comparing the area between the E1
and E2 peaks in the data (r) and the reference area ratio (R)
belonging to the library. The information about shielding is also
included in the probability, depending on whether the value of r is
greater or less than R[9].
2.4. Performance evaluation of peak based Bayesian RID algorithm

The reliability of radioisotope identification(RID) was quantified
using two different performance approaches. The same scoring
criteria were employed to objectively assess the performance of an
isotope identification algorithm. For instance, a report of Domestic
Nuclear Detection Office (DNDO) provides an overview of the
equations, nuclide weighting factors, nuclide equivalencies, and
configuration weighting factors used by the application for scoring
RID algorithm performance models [14,19]. It is worth noting that,
in the analyses made with Bayesian statistics, the deviation from
the real value can be found by looking at the precision values instead
of calculating the variance values as in classical statistics [23].

The models such as F e score (i.e., harmonic mean) or total
scoring(ST) used in performance evaluation in radioisotope iden-
tification applications can be described as follows:
2.4.1. F e score model
The F e score is a criterion for the basic statistical model used in

the RID algorithm performance evaluation [24]. The data obtained
in this evaluation model are classified in four different ways as true
positive (TP), true negative (TN), false positive (FP) and false
negative (FN). With this classification obtained, precision (P),
sensitivity (i.e., Recall, r), accuracy (A) and F - score (F - score) values
can be calculated. While evaluating the performance of the algo-
rithm applied here, calculating accuracy may not always give cor-
rect results. For this reason, the F-score model has been developed
relating to both precision (P) and recall (r) parameters.

Precision ðPÞ¼ TP
TP þ FP

(6)

Recall ðrÞ¼ TP
TP þ FN

(7)
Table 2
Identification scoring for spectra containing a single radioisotope [21].

Score Scoring for identification of a single radioi

1 Only one radioisotope identified and it is c
0.50 2þ radioisotopes identified: one radioisoto
0.25 2þ radioisotopes identified: one radioisoto
0 No radioisotope identified
�1 1þ radioisotopes identified but none is cor

Table 3
Identification scoring for spectra containing more than one radioisotope [21].

Score Score radioisotope identification results

1 2 radioisotopes identified and both are correct.
0.75 3þ radioisotopes identified, including the two correct radioisotopes (and one of
0.50 3þ radioisotope identified, including the two correct radioisotopes (but the high

correct.
0.25 2þ radioisotopes identified but only one is correct
0 No radioisotope identified
�1 1þ radioisotope (s) identified but none is correct.
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AccuracyðAÞ¼ TP þ TN
TP þ FP þ TN þ FN

(8)

Thus, F - score value is simply calculated the harmonic mean of
the precision and recall(i.e.,sensitivity) values, as seen in Eq.10.

Score
�
F
�

¼ 2
P$r
P þ r

(9)

The F - score is estimated as a decimal number between 0 and 1,
and as this F - score approaches 1, that is to say 100% corresponds to
the accuracy of the algorithm which is the best score.

2.4.2. Total scoring model, ST
The total scoring model which is used to evaluate radioisotope

identification applications, works within certain rules as seen in
Table 2 and Table 3 instead of two different possibilities as true or
false as in other models. Evaluation of the radioisotope identifica-
tion results of spectra containing only one radioisotope is done by
scoring with the rules in Table 2 to quantify total scoring num-
ber(ST),. The scoring system in Table 3 is used to examine the per-
formance of RID algorithms onmore complex spectra of radioactive
materials which might contain many radioisotopes than one single
radioisotope such as enriched uranium, reactor fuel and U- or Th-
ores and their daughters.

3. Results and discussion

In this study, a new technology LaBr3:Ce scintillation detector
having a better energy resolution than that of NaI(Tl) scintillation
detectors, conventionally used in RIDs was considered to develop
this new algorithm for ID purpose. Since a LaBr3:Ce scintillation
detector gave the well resolvable photopeaks in the spectrum, the
developed algorithm have resulted in more precise and accurate
radioisotope identification, thus also allowing SNM categorization.
To this end, the point single- sources such as 241Am, 57Co, 54Mn,
137Cs and 60Co were used to validate the proposed RID algorithm
based on Bayesian statistical approach. In the present modified
peak based Bayesian RID algorithm, the posterior probability values
using Eq. (2) were obtained for single isotopes having one or two
separate peaks such as 241Am (59.6 keV) seen in Fig. 3, 57Co
(122.1 keV; 136 keV) seen in Fig. 4, 137Cs (661.6 keV) seen in Fig. 5,
54Mn (834.8 keV) seen in Fig. 6 and 60Co (1173.2 keV; 1332.5 keV)
sotope

orrect.
pe is correct radioisotope and it has the highest confidence
pe is correct, but an incorrect radioisotope has the highest confidence.

rect

the correct radioisotopes has the highest confidence)
est confidence radioisotope is not correct), or 1 radioisotope identified and it is



Fig. 3. Posterior probability values estimated from Bayesian statistical approach for
241Am gamma-ray spectrum measured by a 38.1 mm � 38.1 mm LaBr3:Ce scintillation
detector.

Fig. 4. Posterior probability values estimated from Bayesian statistical approach for
57Co gamma-ray spectrum measured by a 38.1 mm � 38.1 mm LaBr3:Ce scintillation
detector.

Fig. 5. Posterior probability value estimated from Bayesian statistical approach for
137Cs gamma-ray spectrum measured by a 38.1 mm � 38.1 mm LaBr3:Ce scintillation
detector.

Fig. 6. Posterior probability value estimated from Bayesian statistical approach for
54Mn gamma-ray spectrum measured by a 38.1 mm � 38.1 mm LaBr3:Ce scintillation
detector.

Fig. 7. Posterior probability value estimated from Bayesian statistical approach for 60Co
gamma-ray spectrum measured with a 38.1 mm � 38.1 mm LaBr3:Ce scintillation
detector.
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seen in Fig. 7. Each source was measured separately at a 5 cm dis-
tance from the detector, as shown in Fig. 1. These posterior prob-
ability results for single isotopes validate the present peak based
Bayesian RID algorithmwhen the isotopes in ANSI library matching
with the measured peak centroids in the spectra according to the
rules considered in this statistical approach.
Estimated from Fig. 3

Identified isotope Posterior probability (%)

241Am 62.6025
238U 20.6347
239Pu 16.7628

Source to detector distance, d ¼ 5 cm
Measurement time, t ¼ 300 s.



Estimated from Fig. 4

Identified isotope Posterior probability (%)

57Co 76.3677
152Eu 17.6987
239Pu 5.9336

Source to detector distance, d ¼ 5 cm
Measurement time, t ¼ 300 s.

Estimated from Fig. 5

Identified isotope Posterior probability (%)

137Cs 100.00

Source to detector distance, d ¼ 5 cm
Measurement time, t ¼ 300 s.

Estimated from Figure 6

Identified isotope Posterior probability (%)
54Mn 100.00

Source to detector distance, d ¼ 5 cm
Measurement time, t ¼ 300 s.

Estimated from Fig. 7

Identified isotope Posterior probability (%)
60Co 100.00

Source to detector distance, d ¼ 5 cm
Measurement time, t ¼ 300 s.

Fig. 8. Posterior probability values estimated from Bayesian statistical approach for
uranium isotopes in NRM171-031 depleted uranium material measured with a
38.1 mm � 38.1 mm LaBr3:Ce detector.

Fig. 9. Posterior probability values estimated from Bayesian statistical approach for
uranium isotopes in EC NRM171-071 natural uranium material measured with a
38.1 mm � 38.1 mm LaBr3:Ce detector.

Fig. 10. Posterior probability values estimated from Bayesian statistical approach for
uranium isotopes in EC NRM171-194 low enriched uranium material measured with a
38.1 mm � 38.1 mm LaBr3:Ce detector.

Fig. 11. Posterior probability values estimated from Bayesian statistical approach for
uranium isotopes in EC NRM171-295 low enriched uranium material measured with a
38.1 mm � 38.1 mm LaBr3:Ce detector.
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After the peak based Bayesian RID algorithm was validated by
using single isotopes with one or two-emitting gamma-ray peaks,
the posterior probabilities of the uranium isotopes were then
estimated for the more complex spectra from NRM 171-031
3919



EC NRM171-295 low enriched uranium material Estimated from Fig. 11

Identified isotope Posterior probability (%)

238U 54.4962
235U 16.2997
67Ga 11.7540
133Xe 6.0953
Others 11.3548

Source to detector distance, d ¼ 5 cm
Measurement time, t ¼ 300 s.

EC NRM171-446 low enriched uranium material Estimated from Fig. 12

Identified isotope Posterior probability (%)

238U 70.9222
235U 10.5085
67Ga 8.6511
133Xe 3.9297
Others 5.9885

Source to detector distance, d ¼ 5 cm
Measurement time, t ¼ 300 s.

Fig. 12. Posterior probability values estimated from Bayesian statistical approach for
uranium isotopes in EC NRM171-446 low enriched uranium material measured with a
38.1 mm � 38.1 mm LaBr3:Ce detector.
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depleted uranium (in Fig. 8), NRM171-071 natural uranium (in
Fig. 9) and low enriched uranium materials NRM 171-194,-295,-
446(in Fig. 10 through 12).
EC NRM171-031 depleted uranium material Estimated from Fig. 8

Identified isotope Posterior probability (%)

238U 74.4058
67Ga 16.5048
235U 5.0032
233U 3.5724
Others 0.5138

Source to detector distance, d ¼ 5 cm
Measurement time, t ¼ 300 s.

EC NRM171-071 natural uranium material Estimated from Fig. 9

Identified isotope Posterior probability (%)

238U 68.2645
67Ga 15.2629
133Xe 6.2735
235U 4.7041
Others 5.495

Source to detector distance, d ¼ 5 cm
Measurement time, t ¼ 300 s.

Fig. 13. Posterior probability values estimated from Bayesian statistical approach for
radium-decay isotopes in BL-3 uranium ore material measured with a
38.1 mm � 38.1 mm LaBr3:Ce detector.
EC NRM171-194 low enriched uranium material Estimated from Fig. 10

Identified isotope Posterior probability (%)

238U 67.7222
67Ga 15.2465
133Xe 6.4350
235U 4.8253
Others 5.7710

Source to detector distance, d ¼ 5 cm
Measurement time, t ¼ 300 s.

Fig. 14. Posterior probability values estimated from Bayesian statistical approach for
radium-decay isotopes in BL-5 uranium ore material measured with a
38.1 mm � 38.1 mm LaBr3:Ce detector.
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Fig. 15. Posterior probability values estimated from Bayesian statistical approach for
thorium isotopes in OKA-2 rare-earth thorium ore material measured with a
38.1 mm � 38.1 mm LaBr3:Ce detector.

OKA-2 certified thorium ore material Estimated from Fig. 15

Identified isotope Posterior probability (%)

232Th 89.8463
152Eu 4.9187
22Na 2.1027
133Xe 1.9161
Others 1.2162

Source to detector distance, d ¼ 5 cm
Measurement time, t ¼ 300 s.

Fig. 16. The percentage posterior probability of 235U and 238U isotopes for the different
low enriched uranium reference materials.
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For the case of more complex gamma-ray spectra from natural
U-ore(BL-3 in Fig. 13, BL-5 in Fig. 14) and OKA-2 Th-ore material in
Fig. 15 were also acquired by a calibrated LaBr3:Ce scintillation
detector at different measurement periods and source-to-detector
distances. In this paper, however, the exampled results are pre-
sented at d ¼ 5 cm distance and 5 min measurement periods to
evaluate the performance of the peak-based Bayesian approach in
which a posterior probability is estimated for each isotope in ANSI
library.
BL-3 certified natural uranium ore material Estimated from Fig. 13

Identified isotope Posterior probability (%)

226Ra 70.7556
133Ba 15.5356
67Ga 4.5558
133Xe 2.3812
Others 6.7718

Source to detector distance, d ¼ 5 cm
Measurement time, t ¼ 300 s.

BL-5 certified natural uranium ore material Estimated from Fig. 14

Identified isotope Posterior probability (%)

226Ra 86.1230
133Ba 7.3764
152Eu 2.3656
235U 0.7236
Others 3.4114

Source to detector distance, d ¼ 5 cm
Measurement time, t ¼ 300 s.
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The posterior probabilities of most abundant isotope 238U and
fissile isotope 235U and in low enriched uranium materials are
shown in Fig. 16 for a measurement period of 300s at a 5 cm dis-
tance,. However, in short measurements, say 30e60s, 235U isotope
could not be identified in depleted uranium due to mainly very low
counting statistics while the present peak-based Bayesian RID al-
gorithm is employed.

As a histogram, Fig. 16 shows the percentage posterior proba-
bilities for both 235U and 238U contained in depleted uranium(0.31%
wt. 235U), natural uranium, (0.71%wt. 235U) and three low enriched
uranium (1.94%wt. 235U, 2.95%wt. 235U and 4.46%wt. 235U) standard
materials(i.e., EC-NRM-171). 235U isotope is identified in low
enriched uranium but the posterior probability is less than 10%, as
expected. On the other hand, 238U isotope is identified more
accurately with a posterior probability of 55e71% in the same
samples. Although the posterior probability of 235U isotope iden-
tification is much lower, these results indicate that the present
peak-based Bayesian RID algorithm works well to identify quanti-
tatively 235U fissile isotope in uranium even if they are depleted or
natural uranium forms.

The applicability of the presently developed peak based-
Bayesian RID algorithm to a medium energy resolution LaBr3:Ce
scintillation detector is given in terms of ID performance index
either total scoring (ST) or F-score. The developed peak-based
Bayesian algorithm was applied to not only single isotopes but
also uranium isotopes. The ID performance was quantified in terms
of F-score for each isotope (see Table 7, 8 and 9). In case of more



Table 4
Total scoring results for radioisotope identification performance of the algorithm in EC-NRM-171 nuclear standard materials for different measurement periods.

Measurement Time (s) Depleted, natural and low enriched uranium (LEU) standard materials Total score, ST (%)

EC NRM171-031 EC NRM171-071 EC NRM171-194 EC NRM171-295 EC NRM171-446

30 0.50 0.75 0.75 0.75 0.75 70.00
60 0.75 0.75 0.75 0.75 0.75 75.00
300 0.75 0.75 0.75 0.75 0.75 75.00
600 0.75 0.75 0.75 0.75 0.75 75.00
900 0.75 0.75 0.75 0.75 0.75 75.00

Source to detector distance, d ¼ 5 cm

Table 5
Total scoring results for radioisotope identification performance of the algorithm in
U and Th- ore certified reference material for different measurement periods.

Measurement Time (s) U- and Th- ore certified
materials

Total score, ST (%)

BL-2 BL-3 BL-5 OKA-2

30 0.00 0.50 0.50 0.75 37.50
60 0.00 0.50 0.75 0.75 37.50
300 0.50 0.50 0.75 0.75 56.25
600 0.50 0.75 0.75 0.75 62.50
900 0.50 0.75 0.75 0.75 62.50

Source to detector distance, d ¼ 5 cm
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complex spectra such as from UeTh ore materials, the total scoring
(ST) method was employed for the performance evaluation(see
Table 4, 5 and 6). These ID performances are given in Table 4
through Table 9 for different measurement periods and source-
to-detector distances for both EC-NRM 171 uranium standards
and CRMs containing natural U and Th (see Table 5) (see Tables 6
and 7).

At different measuremet times and source-to-detector dis-
tances, the presently developed peak-based Bayesian RID algorithm
allows us to radioisotope categorization and SNM categorization.
This shows that it works well for the case of LaBr3:Ce medium
resolution detector if one wants to identify SNM as well as other
radioisotopes given the library.

4. Conclusion

The peak based Bayesian RID algorithm was modified from the
well-known Bayesian statistical approach which was already used
for the low energy resolution NaI:Tl detectors. It has been
Table 6
Total scoring results for radioisotope identification performance of algorithm in EC NRM

Source to detector distance (cm) Depleted, natural and low enriched uranium (LE

EC NRM171-031 EC NRM171-071 EC

5 0.75 0.75 0.7
15 0.75 0.75 0.7
25 0 0.75 0.5

Measurement time, t ¼ 300 s.

Table 7
F-score results for radioisotope identification performance of algorithm in EC NRM 171 n

Measurement time (s) True positive (TP) False positive (FP) False Neg

30 5.00 0 0
60 5.00 0 0
300 5.00 0 0
600 5.00 0 0
900 5.00 0 0

Source to detector distance, d ¼ 5 cm
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successfully validated for a medium energy resolution LaBr3:Ce
detector by using single isotopes of 241Am, 57Co, 137Cs, 54Mn and
60Co. Then this RID algorithm was applied first time to five EC
NRM171 nuclear uranium standard materials (containing
0.32e4.51% at.235U), as well as natural U- and Th-ores such as BL-2,
BL-3, BL-5 and OKA-2 ore materials. In order to get ID extraction
features from themeasured gamma ray spectrum in the peak based
Bayesian approach, essentially two basic classifiers(experimentally
determined peak centroids and peak areas) were used., Thus we
estimated a posterior probability for each isotope if it matchedwith
the isotope in the library. In this work, ANSI standard libraries are
preferably considered to match peak centroids within energy tol-
erances for the case of a calibrated detector.

In conclusion, the ID performance of the developed peak based
Bayesian RID algorithm was quantified in terms of F-score for each
isotope in the acquired gamma-ray spectrum. The posterior prob-
ability is calculated to be 54.5e74.4% for major isotope 238U and
4.7e10.5% for minor isotope 235U in uranium standard materials.
When this developed RID algorithm was applied to more complex
gamma-ray spectra, for eaxample, obtained from CRMs containing
U and Th, then, the total scoring index (ST) for the ID performance
evaluation of the present algorithm resulted in more reliable de-
cisions to identify 226Ra, 238U and 232Th and their decay products.
Since total scoring (ST) index considers many radioisotopes than
one radioisotope present in the spectrum, it is a more useful ID
performance evaluation method for the peak based Bayesian RID
algorithm. In conclusion, it was shown that the developed Bayesian
RID algorithm can be applied to identify 235U and 238U isotopes in
depleted, natural and LEU or natural UeTh samples, and other
medical, industrial isotopes if the measurements are carried out
using a medium energy resolution scintillator detector such as
LaBr3:Ce.
171 nuclear standard materials at different measuring distances.

U) standard materials Total score, ST (%)

NRM171-194 EC NRM171-295 EC NRM171-446

5 0.75 0.75 75.00
5 0.75 0.75 75.00
0 0.50 0.50 45.00

uclear standard materials for different measurement periods.

ative (FN) Precision (P) Recall (r) Performance Index (F eScore)

1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00



Table 8
F e score results for radioisotope identification performance of algorithm in U and Th ore certified reference materials for different measurement periods.

Measurement time (s) True positive (TP) False positive (FP) False Negative (FN) Precision (P) Recall (r) Performance Index (F eScore)

30 2.00 1.00 1.00 0.67 0.67 0.67
60 2.00 1.00 1.00 0.67 0.67 0.67
300 4.00 0 0 1.00 1.00 1.00
600 4.00 0 0 1.00 1.00 1.00
900 4.00 0 0 1.00 1.00 1.00

Source to detector distance, d ¼ 5 cm

Table 9
F e score results for radioisotope identification performance of algorithm in EC-NRM 171 nuclear standard materials at different measuring distances.

Source to detector distance (cm) True positive (TP) False positive (FP) False Negative (FN) Precision (P) Recall (r) Performance Index (F eScore)

5 5.00 0 0 1.00 1.00 1.00
15 5.00 0 0 1.00 1.00 1.00
25 1.00 3.00 1.00 0.25 0.50 0.33

Measurement time, t ¼ 300 s.
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