• 제목/요약/키워드: feature value

검색결과 1,180건 처리시간 0.033초

색상 움직임을 이용한 얼굴 특징점 자동 추출 (Automatic Extraction of the Facial Feature Points Using Moving Color)

  • 김남호;김형곤;고성제
    • 전자공학회논문지S
    • /
    • 제35S권8호
    • /
    • pp.55-67
    • /
    • 1998
  • 본 논문에서는 컬러 비디오 시퀀스 상에서 눈과 입에 해당하는 얼굴 특징점을 고속으로 추출하는 방법을 제안한다. 자유로운 움직임을 갖는 얼굴 영역을 안정적으로 추출하기 위해 얼굴 색상 분포를 이용한 색상 변환 영상에 움직임 검출 기법을 적용하여 움직이는 살색 부분만을 효율적으로 검출하는 색상 움직임 개념을 사용하였다. 움직임 정보는 살색의 가능성 정도에 따라 가중치가 주어지며 화소 단위의 움직임 여부를 결정하는 문턱값도 살색의 가능성 정도에 따라 적응적으로 결정된다. 눈의 색상분포와 형태소 연산자를 사용한 움직임 살색 영역에서 눈 후보 영역을 추출하고 눈과 눈썹의 상호 위치 관계를 이용하여 눈의 영역을 최종 결정한다. 입의 영역은 눈의 위치를 기준으로 입 후보 영역을 정하고 색상 히스토그램을 이용하여 입의 영역을 검출한다. 찾아진 눈과 입의 영역에서 정확한 특징점의 위치를 구하기 위해 PCA (Principal Component Analysis)를 사용하였다. 실험 결과 복잡한 배경, 개인적인 편차, 얼굴의 방향과 크기 등에 영향을 받지 않고 고속으로 정확한 얼굴의 특징점을 추출할 수 있었다.

  • PDF

칼라의 공간적 상관관계 및 국부 질감 특성을 이용한 영상검색 (Image Retrieval Using Spacial Color Correlation and Local Texture Characteristics)

  • 성중기;천영덕;김남철
    • 대한전자공학회논문지SP
    • /
    • 제42권5호
    • /
    • pp.103-114
    • /
    • 2005
  • 본 논문에서는 칼라 특징으로 칼라 오토코렐로그램(autocorrelogram)을 선택하고 질감 특징으로 BDIP(block difference inverse probabilities)와 BVLC(block variance of local correlation coefficient)를 선택하여 이들을 효율적으로 추출하고 결합한 다중 특징기반 영상검색 기법을 제안한다. 칼라 오토코렐로그램은 영상의 H(hue), S(saturation) 칼라 성분으로부터 추출 하였고, BDIP와 BVLC는 V(value) 성분으로부터 추출하였다. 이때 각 특징추출 시 계산량을 고려하여 간소화된 오토코렐로그램과 BVLC를 제안하여 사용하였으며, 추출한 특징들을 효율적으로 저장하기 위해 특징벡터성분들의 값을 그 분포에 따라 균등 또는 비균등 양자화 하여 사용하였다. Corel DB및 VisTex DB에 대한 실험 결과, 칼라 오토코렐로그램과 BDIP, BVLC 질감 특징을 결합함으로써 동일한 차원에서 오토코렐로그램만을 사용할 때보다 최대 9.5%, BDIP, BVLC만을 사용할 때보다 최대 4% 검색성능이 향상되었다. 또한 제안한 다중 특징은 웨이브렛 모멘트, CSD, 칼라 히스토그램에 비해 특징벡터의 저장공간을 약 3분의 1 정도 적게 차지하면서 검색성능이 각각 최대 12.6%, 14.6%, 27.9% 우수하게 나타남을 확인할 수 있었다.

약물유전체학에서 약물반응 예측모형과 변수선택 방법 (Feature selection and prediction modeling of drug responsiveness in Pharmacogenomics)

  • 김규환;김원국
    • 응용통계연구
    • /
    • 제34권2호
    • /
    • pp.153-166
    • /
    • 2021
  • 약물유전체학 연구의 주요 목표는 고차원의 유전 변수를 기반으로 개인의 약물 반응성을 예측하는 것이다. 변수의 개수가 많기 때문에 변수의 개수를 줄이기 위해서는 변수 선택이 필요하며, 선택된 변수들은 머신러닝 알고리즘을 사용하여 예측 모델을 구축하는데 사용된다. 본 연구에서는 400명의 뇌전증 환자의 차세대 염기서열 분석 데이터에 로지스틱 회귀, ReliefF, TurF, 랜덤 포레스트, LASSO의 조합과 같은 여러 가지 혼합 변수 선택 방법을 적용하였다. 선택된 변수들에 랜덤포레스트, 그래디언트 부스팅, 서포트벡터머신을 포함한 머신러닝 방법들을 적용했고 스태킹을 통해 앙상블 모형을 구축하였다. 본 연구의 결과는 랜덤포레스트와 ReliefF의 혼합 변수 선택 방법을 이용한 스태킹 모형이 다른 모형보다 더 좋은 성능을 보인다는 것을 보여주었다. 5-폴드 교차 검증을 기반으로 하여 적합한 최적 모형의 평균 검증 정확도는 0.727이고 평균 검증 AUC 값은 0.761로 나타났다. 또한, 동일한 변수를 사용할 때 스태킹 모델이 단일 머신러닝 예측 모델보다 성능이 우수한 것으로 나타났다.

웨이블렛-신경망을 이용한 부분방전 종류와 진단에 관한연구 (A Study on Diagnosis of Partial Discharge Type Using Wavelet Transform-Neural Network)

  • 박재준;전현구;전병훈;김성홍;권동진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.894-899
    • /
    • 2002
  • In this papers, we proposed the new method in order to diagnosis partial discharge type of transformers. For wavelet transform, Daubechies filter is used, we can obtain wavelet coefficients which is used to extract feature of statistical parameters (maximum value, average value, dispersion, skewness, kurtosis) about high frequency current signal per 3-electrode type (needle-plane electrode, IEC electrode and Void electrode.). Also. these coefficients are used to identify Signal of internal partial discharge in transformer. As a result. from compare of high frequency current signal amplitude and average value. we are obtained results of IEC electrode> Void electrode> Needle-Plane electrode. otherwise. In case of skewness and kurtosis, we are obtained results of Void electrode> IEC electrode > Needle-Plane electrode. As Improved method in order to diagnosis partial discharge type of transformers, we use neural network.

  • PDF

격자 단위 특징값을 이용한 도로 영상의 차량 영역 분할 (Vehicle Area Segmentation from Road Scenes Using Grid-Based Feature Values)

  • 김구진;백낙훈
    • 한국멀티미디어학회논문지
    • /
    • 제8권10호
    • /
    • pp.1369-1382
    • /
    • 2005
  • 도로 영상에서 차량 영역을 분할하는 차량 영역 분할(vehicle segmentation) 문제는 지능형 교통 시스템을 비롯한 다양한 응용 분야들에서 중요하게 사용되는 기본 연산(fundamental operation)이다. 본 연구에서는 야외의 도로 상에 설치된 CCD카메라에서 촬영된 정지 영상으로부터 차량 영역을 찾아내는 효율적인 방법을 제안한다 제안하는 방법은 입력되는 영상들을 격자 단위로 분할하여 각 격자에서의 에지 검출 결과를 대표하는 특징값(feature value)들을 통계적으로 분석한 후, 이를 바탕으로 최적해를 구한다. 전처리 과정에서는 다양한 외부 환경에서 촬영한 배경 영상들에 대해서 각 격자에서의 특징값들을 통계 처리한다. 입력된 차량 영상에서는 각 격자의 특징값이 배경 영상의 대응되는 격자에서의 특징값과 통계적으로 얼마나 오차를 보이냐에 따라, 배경 영역인지 차량 영역인지를 판단한다. 격자 별로 차량 영역에 해당하는 지를 판정한 뒤, 이 결과에 동적 프로그래밍(dynamic Programming) 기법을 이용하여 차량을 포함하는 최적의 직사각형 영역을 찾아낸다. 본 논문에서 제안하는 방법은 통계 처리와 전역 탐색 기법을 사용하므로 휴리스틱에 주로 의존하는 기존 연구들에 비해 좀더 체계적이다. 또한, 배경 영상에 대한 통계 처리는 흐리거나 맑은 등의 날씨 변화 및 바람이나 진동에 의한 카메라의 흔들림과 같은 다양한 외부 요인들이 가져올 수 있는 노이즈나 오차에 대해서도 높은 신뢰성을 보여준다. 제안하는 방법을 구현한 프로토타입 시스템은 $1280\times960$ 크기의 차량 영상들을 장당 평균 0.150초의 수행 시간에 처리하였으며, 총 270장의 다양한 노이즈를 가지는 차량 영상들에 대해 $97.03\%$의 성공률을 보였다.

  • PDF

스케일 스페이스 특징점을 이용한 영상 워터마킹 (Image Watermarking Based on Feature Points of Scale-Space Representation)

  • 서진수;유창동
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.367-370
    • /
    • 2005
  • This paper proposes a novel method for content-based watermarking based on feature points of an image. At each feature point, watermark is embedded after affine normalization according to the local characteristic scale and orientation. The characteristic scale is the scale at which the normalized scale-space representation of an image attains a maximum value, and the characteristic orientation is the angle of the principal axis of an image. By binding watermarking with the local characteristics of an image, resilience against affine transformations can be obtained. Experimental results show that the proposed method is robust against various image processing steps including affine transformations, cropping, filtering, and JPEG compression.

  • PDF

영상신호처리 기법을 이용한 고압전동기 고정자권선 절연결함신호 분류 (Classification of Insulation Fault Signals for High Voltage Motors Stator Winding using Image Signal Process Technique)

  • 박재준;김희동
    • 한국전기전자재료학회논문지
    • /
    • 제20권1호
    • /
    • pp.65-73
    • /
    • 2007
  • Pattern classification of single and multiple discharge sources was applied using a wavelet image signal method in which a feature extraction was applied using a hidden sub-image. A feature extracting method that used vertical and horizontal images using an MSD method was applied to an averaging process for the scale of pulses for the phase. A feature extracting process for the preprocessing of the input of a neural network was performed using an inverse transformation of the horizontal, vertical, and diagonal sub-images. A back propagation algorithm in a neural network was used to classify defective signals. An algorithm for wavelet image processing was developed. In addition, the defective signal was classified using the extracted value that was quantified for the input of a neural network.

Image-Based Maritime Obstacle Detection Using Global Sparsity Potentials

  • Mou, Xiaozheng;Wang, Han
    • Journal of information and communication convergence engineering
    • /
    • 제14권2호
    • /
    • pp.129-135
    • /
    • 2016
  • In this paper, we present a novel algorithm for image-based maritime obstacle detection using global sparsity potentials (GSPs), in which "global" refers to the entire sea area. The horizon line is detected first to segment the sea area as the region of interest (ROI). Considering the geometric relationship between the camera and the sea surface, variable-size image windows are adopted to sample patches in the ROI. Then, each patch is represented by its texture feature, and its average distance to all the other patches is taken as the value of its GSP. Thereafter, patches with a smaller GSP are clustered as the sea surface, and patches with a higher GSP are taken as the obstacle candidates. Finally, the candidates far from the mean feature of the sea surface are selected and aggregated as the obstacles. Experimental results verify that the proposed approach is highly accurate as compared to other methods, such as the traditional feature space reclustering method and a state-of-the-art saliency detection method.

가속도센서를 이용한 운전패턴 인식기법 (Recognition of Driving Patterns Using Accelerometers)

  • 허근섭;배기만;이상룡;이춘영
    • 제어로봇시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.517-523
    • /
    • 2010
  • In this paper, we proposed an algorithm to detect aggressive driving status by analysing six kinds of driving patterns, which was achieved by comparing for the feature vectors using mahalanobis distance. The first step is to construct feature matrix of $6{\times}2$ size using frequency response of the time-series accelerometer data. Singular value decomposition makes it possible to find the dominant eigenvalue and its corresponding eigenvector. We use the eigenvector as the feature vector of the driving pattern. We conducted real experiments using three drivers to see the effects of recognition. Although there exists differences from individual drivers, we showed that driving patterns can be recognized with about 80% accuracy. Further research topics will include the development of aggressive driving warning system by improving the proposed technique and combining with post-processing of accelerometer signals.

웨이브렛 변환을 이용한 내용기반 검색 시스템 (Content-based retrieval system using wavelet transform)

  • 반가운;유기형;박정호;최재호;곽훈성
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.733-736
    • /
    • 1998
  • In this paper, we propose a new method for content-based retrieval system using wavelet transform and correlation, which has were used in signal processing and image compressing. The matching method is used not perfect matching but similar matching. Used feature vector is the lowest frequency(LL) itself, energy value, and edge information of 4-layer, after computng a 4-layer 2-D fast wavelet transform on image. By the proosed algorithm, we got the result that was faste rand more accurate than the traditional algorithm. Because used feature vector was compressed 256:1 over original image, retrieval speed was highly improved. By using correlation, moving object with size variation was reterieved without additional feature information.

  • PDF