Journal of the Korea Society of Computer and Information
/
v.27
no.9
/
pp.13-20
/
2022
It's proposed and analyzed ML(Machine Learning) models to predict vehicle FC(Fuel Consumption) in real-time. The test driving was done for a car to measure vehicle speed, acceleration, road gradient and FC for training dataset. The various ML models were trained with feature data of speed, acceleration and road-gradient for target FC. There are two kind of ML models and one is regression type of linear regression and k-nearest neighbors regression and the other is classification type of k-nearest neighbors classifier, logistic regression, decision tree, random forest and gradient boosting in the study. The prediction accuracy is low in range of 0.5 ~ 0.6 for real-time FC and the classification type is more accurate than the regression ones. The prediction error for total FC has very low value of about 0.2 ~ 2.0% and regression models are more accurate than classification ones. It's for the coefficient of determination (R2) of accuracy score distributing predicted values along mean of targets as the coefficient decreases. Therefore regression models are good for total FC and classification ones are proper for real-time FC prediction.
Recently introduced image classification methods using Transformers show remarkable performance improvements over conventional neural network-based methods. In order to effectively consider regional features, research has been actively conducted on how to apply transformers by dividing image areas into multiple window areas, but learning of inter-window relationships is still insufficient. In this paper, to overcome this problem, we propose a transformer structure that can reflect the relationship between windows in learning. The proposed method computes the importance of each window region through compression and a fully connected layer based on self-attention operations for each window region. The calculated importance is scaled to each window area as a learned weight of the relationship between the window areas to re-calibrate the feature value. Experimental results show that the proposed method can effectively improve the performance of existing transformer-based methods.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.3
/
pp.521-526
/
2023
Due to the recent pandemic, most educational systems are being conducted through online classes. Unlike face-to-face classes, it is even more difficult for learners to maintain concentration, and evaluating the learners' attitude toward the class is also challenging. In this paper, we proposed a real-time concentration-based review support system for learners in real-time video lectures that can be used in online classes. This system measured the learner's face, pupils, and user activity in real-time using the equipment used in the existing video system, and delivers real-time concentration measurement values to the instructor in various forms. At the same time, if the concentration measurement value falls below a certain level, the system alerted the learner and records the timestamp of the lecture. By using this system, instructors can evaluate the learners' participation in the class in real-time and help to improve their class abilities.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.12
/
pp.1786-1793
/
2022
Cyber-attacks such as smishing and hacking mail exploiting COVID-19, political and social issues, have recently been continuous. Machine learning and deep learning technology research are conducted to prevent any damage due to cyber-attacks inducing malicious links to breach personal data. It has been concluded as a lack of basis to judge the attacks to be malicious in previous studies since the features of data set were excessively simple. In this paper, nine main features of three types, "URL Days", "URL Word", and "URL Abnormal", were proposed in addition to lexical features of URL which have been reflected in previous research. F1-Score and accuracy index were measured through four different types of machine learning algorithms. An improvement of 0.9% in a result and the highest value, 98.5%, were examined in F1-Score and accuracy through comparatively analyzing an existing research. These outcomes proved the main features contribute to elevating the values in both accuracy and performance.
Defining key characteristics of Southeast Asia requires historical interpretation. Southeast Asia is a diverse and complicated region, but some of modern history's "grand narratives" serve to unify its historical experience. At a minimum, the modern history of the region involves decisive encounters with universal religions, the rise of Western colonialism, the experience of world wars, decolonization, and the end of the "cycle of violence". The ability of the region's peoples to adapt to these many challenges and successfully build new nations is a defining feature of Southeast Asia's place in the global stage. This paper will begin with a question: is it possible to develop a hermeneutic of "expedience" as a way to interpret the region's history? That is, rather than regard the region from a purely Western, nationalist, "internalist" point of view, it would be useful to identify a new series of interpretative contexts from which to begin scholarly analysis. In order to contextualize this discussion, the paper will draw upon the writings of figures who explored the region before knowledge about it was shaped by purely colonist or nationalist enterprises. To this end, particular attention will be devoted to exploring some of John Furnivall's ways of conceptualizing Southeast Asia. Investigating Furnivall, a critic of colonialism, will be done in relation to his historical situation. Because Furnivall's ideas have played a pivotal role in the interpretation of Southeast Asia, the paper will highlight the intellectual history of the region in order to ascertain the value of these concepts for subsequent historical interpretation. Ultimately, the task of interpreting the region's history requires a framework which will move beyond the essentializing orientalist categories produced by colonial scholarship and the reactionary nation-building narratives which followed. Instead, by beginning with a mode of historical interpretation that focuses on the many realities of expedience which have been necessary for the region's peoples, it may be possible to write a history which highlights the extraordinarily adaptive quality of Southeast Asia's populations, cultures, and nations. To tell this story, which would at once highlight key characteristics of the region while showing how they developed through historical encounters, would go a long way to capturing Southeast Asia's contribution's to global development.
Jimin Lee;Ki Seok Choo;Yeon Joo Jeong;Geewon Lee;Minhee Hwang;Maria Roselle Abraham;Ji Won Lee
Korean Journal of Radiology
/
v.24
no.6
/
pp.512-521
/
2023
Objective: There is increasing recognition that left atrial (LA) strain can be a prognostic marker of various cardiac diseases. However, its prognostic value in acute myocarditis remains unclear. Therefore, this study aimed to evaluate whether cardiovascular magnetic resonance (CMR)-derived parameters of LA strain can predict outcomes in patients with acute myocarditis. Materials and Methods: We retrospectively analyzed the data of 47 consecutive patients (44.2 ± 18.3 years; 29 males) with acute myocarditis who underwent CMR in 13.5 ± 9.7 days (range, 0-31 days) of symptom onset. Various parameters, including feature-tracked CMR-derived LA strain, were measured using CMR. The composite endpoints included cardiac death, heart transplantation, implantable cardioverter-defibrillator or pacemaker implantation, rehospitalization following a cardiac event, atrial fibrillation, or embolic stroke. The Cox regression analysis was performed to identify associations between the variables derived from CMR and the composite endpoints. Results: After a median follow-up of 37 months, 20 of the 47 (42.6%) patients experienced the composite events. In the multivariable Cox regression analysis, LA reservoir and conduit strains were independent predictors of the composite endpoints, with an adjusted hazard ratio per 1% increase of 0.90 (95% confidence interval [CI], 0.84-0.96; P = 0.002) and 0.91 (95% CI, 0.84-0.98; P = 0.013), respectively. Conclusion: LA reservoir and conduit strains derived from CMR are independent predictors of adverse clinical outcomes in patients with acute myocarditis.
Rocks undergoing repeated loading and unloading over an extended period, such as due to earthquakes, human excavation, and blasting, may result in the gradual accumulation of stress and deformation within the rock mass, eventually reaching an unstable state. In this study, a CNN-CCM is proposed to address the mechanical behavior. The structure and hyperparameters of CNN-CCM include Conv2D layers × 5; Max pooling2D layers × 4; Dense layers × 4; learning rate=0.001; Epoch=50; Batch size=64; Dropout=0.5. Training and validation data for deep learning include 71 rock samples and 122,152 data points. The AI Rock Constitutive Model learned by CNN-CCM can predict strain values(ε1) using Mass (M), Axial stress (σ1), Density (ρ), Cyclic number (N), Confining pressure (σ3), and Young's modulus (E). Five evaluation indicators R2, MAPE, RMSE, MSE, and MAE yield respective values of 0.929, 16.44%, 0.954, 0.913, and 0.542, illustrating good predictive performance and generalization ability of model. Finally, interpreting the AI Rock Constitutive Model using the SHAP explaining method reveals that feature importance follows the order N > M > σ1 > E > ρ > σ3.Positive SHAP values indicate positive effects on predicting strain ε1 for N, M, σ1, and σ3, while negative SHAP values have negative effects. For E, a positive value has a negative effect on predicting strain ε1, consistent with the influence patterns of conventional physical rock constitutive equations. The present study offers a novel approach to the investigation of the mechanical constitutive model of rocks under cyclic loading and unloading conditions.
Jae Kyeong Lee;Ju Hye Baek;Dong Min Han;Se Hee Lee;So Young Kim;Che Ok Jeon
Journal of Microbiology and Biotechnology
/
v.33
no.11
/
pp.1448-1456
/
2023
A Gram-positive, non-motile, and non-spore-forming lactic acid bacterium, designated as BK2T, was isolated from kimchi, a Korean traditional fermented vegetable food, and the taxonomic characteristics of strain BK2T, along with strain LMG 11983, were analyzed. Both strains optimally grew at 30℃, pH 7.0, and 1.0% NaCl. Cells of both strains were heterofermentative and facultatively anaerobic rods, demonstrating negative reactions for catalase and oxidase. Major fatty acids (>10%) identified in both strains were C18:1 ω9c, C16:0, and summed feature 7 (comprising C19:1 ω6c and/or C19:1 ω7c). The genomic DNA G+C contents of both strains were 44.7 mol%. The 16S rRNA gene sequence similarity (99.9%), average nucleotide identity (ANI; 99.9%), and digital DNA-DNA hybridization (dDDH; 99.7%) value between strains BK2T and LMG 11983 indicated that they are different strains of the same species. Strain BK2T was most closely related to Weissella confusa JCM 1093T and Weissella cibaria LMG 17699T, with 100% and 99.4% 16S rRNA gene sequence similarities, respectively. However, based on the ANI and dDDH values (92.3% and 48.1% with W. confusa, and 78.4% and 23.5% with W. cibaria), it was evident that strain BK2T represents a distinct species separate from W. confusa and W. cibaria. Based on phylogenetic, phenotypic, and chemotaxonomic features, strains BK2T and LMG 11983 represent a novel species of the genus Weissella, for which the name Weissella fermenti sp. nov. is proposed. The type of strain is BK2T (=KACC 22833T=JCM 35750T).
A collaborative filtering-based recommender system is a method that gives priority to items preferred by similar neighbors when providing recommended items for the current user. The similarity measure is very important for the performance of the system. In this study, a genetic algorithm was used to calculate the similarity value between users that results in optimal performance. In particular, the genetic algorithm was run separately for each rated item feature to improve prediction accuracy performance. Through performance experiments, the optimal probabilities of the genetic algorithm operators were obtained, and as a result of experiments using two types of public datasets, it was confirmed that the prediction performance of the proposed method was superior to that of existing methods, especially in a sparse data environment. The results of this study can improve the accuracy of personalized recommendations and be effectively applied in real-world applications with large-scale user and item data.
Zero Knowledge Proof (ZKP) is an innovative decentralized technology designed to enhance the privacy and security of virtual currency transactions. By ensuring that only the necessary information is disclosed by the transaction provider, ZKP protects the confidentiality of all parties involved. This ensures that both the identity of the transacting parties and the transaction value remain confidential.ZKP not only provides a robust privacy function by concealing the identities and values involved in blockchain transactions but also facilitates the exchange of money between parties without the need to verify each other's identity. This anonymity feature is crucial in promoting trust and security in financial transactions, making ZKP a pivotal technology in the realm of virtual currencies. In the context of the Fourth Industrial Revolution, the application of ZKP contributes significantly to the comprehensive and stable development of financial services. It fosters a trustworthy user environment by ensuring that transaction privacy is maintained, thereby encouraging broader adoption of virtual currencies. By integrating ZKP, financial services can achieve a higher level of security and trust, essential for the continued growth and innovation within the sector.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.