• 제목/요약/키워드: feature reconstruction

검색결과 221건 처리시간 0.021초

가산잡음환경에서 강인음성인식을 위한 은닉 마르코프 모델 기반 손실 특징 복원 (HMM-based missing feature reconstruction for robust speech recognition in additive noise environments)

  • 조지원;박형민
    • 말소리와 음성과학
    • /
    • 제6권4호
    • /
    • pp.127-132
    • /
    • 2014
  • This paper describes a robust speech recognition technique by reconstructing spectral components mismatched with a training environment. Although the cluster-based reconstruction method can compensate the unreliable components from reliable components in the same spectral vector by assuming an independent, identically distributed Gaussian-mixture process of training spectral vectors, the presented method exploits the temporal dependency of speech to reconstruct the components by introducing a hidden-Markov-model prior which incorporates an internal state transition plausible for an observed spectral vector sequence. The experimental results indicate that the described method can provide temporally consistent reconstruction and further improve recognition performance on average compared to the conventional method.

구조 최적화를 위한 특징형상 재설계 알고리즘 (A Feature-based Reconstruction Algorithm for Structural Optimization)

  • 박상근
    • 융복합기술연구소 논문집
    • /
    • 제4권2호
    • /
    • pp.1-9
    • /
    • 2014
  • This paper examines feature-based reconstruction algorithm using feature-based modeling and based on topology optimization technology, which aims to achieve a minimal volume weight and to satisfy user-defined constraints such as stress, deformation related conditions. The finite element model after topology optimization allows us to remove some region of a solid model for predefined volume requirement. The stress or deformation distribution resulted from finite element analysis enables us to add some material to the solid model for a robust structure. For this purpose, we propose a feature-based redesign algorithm which inserts negative features to the solid model for material removal and positive features for material addition, and we introduce a bisection method which searches an optimal structure by iteratively applying the feature-based redesign algorithm. Several examples are considered to illustrate the proposed algorithms and to demonstrate the effectiveness of the present approach.

단면 윤곽선을 기반으로 한 두부표변의 재구성 (Reconstruction of Head Surface based on Cross Sectional Contours)

  • 한영환;성현경;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권4호
    • /
    • pp.365-373
    • /
    • 1997
  • 본 논문에는 표면 형태만을 고려한 방법으로 다수의 단면 영상 데이터로부터, 관심있는 기관의 외부 표면을 패치(patch)에 의한 방법으로 재구성하여 삼차원적으로 표시하는 것을 목적으로 한다. 이를 위해 본 논문에서는 표면을 형성하기 위한 특징점을 추출하기 위하여 제거법에 의한 특징점 추출이라는 알고리즘을 제안하여 사용하였으며, 표면을 재구성하기 윟나 과정에서 두 단면의 영상의 특징점 사이의 최소 거리를 비용 함수로 사용하는 방법을 제안하였다. 제안한 알고리즘의 효용성을 확인하기 위하여 두부에 대한 이차원 CT 영상을 사용하여 실험을 실시하고 다른 방법과 비교하여 보았다.

  • PDF

CT영상의 3차원 재구성 및 표현에 관한 연구 (A Study on the 3D Reconstruction and Representation of CT Images)

  • 한영환;이응혁
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권2호
    • /
    • pp.201-208
    • /
    • 1994
  • Many three-dimensional object modeling and display methods for computer graphics and computer vision have been developed. Recently, with the help of medical imaging devices such as computerized tomography, magnetic resonance image, etc., some of those object modeling and display methods have been widely used for capturing the shape, structure and other properties of real objects in many medical applications. In this paper, we propose the reconstruction and display method of the three-dimensional object from a series of the cross sectonal image. It is implemented by using the automatic threshold selection method and the contour following algorithm. The combination of curvature and distance, we select feature points. Those feature points are the candidates for the tiling method. As a results, it is proven that this proposed method is very effective and useful in the comprehension of the object's structure. Without the technician's responce, it can be automated.

  • PDF

Rectangle Region Based Stereo Matching for Building Reconstruction

  • Wang, Jing;Miyazaki, Toru;Koizumi, Hirokazu;Iwata, Makoto;Chong, Jong-Wha;Yagyu, Hiroyuki;Shimazu, Hideo;Ikenaga, Takeshi;Goto, Satoshi
    • Journal of Ubiquitous Convergence Technology
    • /
    • 제1권1호
    • /
    • pp.9-17
    • /
    • 2007
  • Feature based stereo matching is an effective way to perform 3D building reconstruction. However, in urban scene, the cluttered background and various building structures may interfere with the performance of building reconstruction. In this paper, we propose a novel method to robustly reconstruct buildings on the basis of rectangle regions. Firstly, we propose a multi-scale linear feature detector to obtain the salient line segments on the object contours. Secondly, candidate rectangle regions are extracted from the salient line segments based on their local information. Thirdly, stereo matching is performed with the list of matching line segments, which are boundary edges of the corresponding rectangles from the left and right image. Experimental results demonstrate that the proposed method can achieve better accuracy on the reconstructed result than pixel-level stereo matching.

  • PDF

Missing-Feature 복구를 위한 대역 독립 방식의 베이시안 분류기 기반 마스크 예측 기법 (Mask Estimation Based on Band-Independent Bayesian Classifler for Missing-Feature Reconstruction)

  • 김우일;;고한석
    • 한국음향학회지
    • /
    • 제25권2호
    • /
    • pp.78-87
    • /
    • 2006
  • 본 논문에서는 알려지지 않은 잡음 환경에서 강인한 음성 인식 성능을 위하여 missing-feature복구 기법을 다루며, 베이시안 분류기를 기반으로 하는 마스크 예측 기법의 성능을 향상시킬 수 있는 방법을 제안한다. 기존의 마스크 예측 기법에서는 배경 잡음 종류에 독립적인 성능을 위해 전 주파수 대역을 분할하여 발생시킨 유색 잡음을 마스크 예측기의 훈련에 이용하였으나, 제한된 양의 훈련 데이터베이스 조건에서는 성능의 한계가 불가피하다. 보다 다양한 잡음 스펙트럼을 반영하면서 마스크 예측의 성능을 향상시키기 위해, 서로 다른 주파수 대역에 독립적인 구조를 가지는 베이시안 분류기를 제안하며, 훈련에 사용하는 유색 잡음의 생성 방식을 이에 맞게 수정한다. 각각의 주파수 대역을 분할하여 유색 잡음을 생성함으로써 다양한 잡음 환경을 반영하는 동시에 훈련 데이터베이스 부족 문제를 줄일 수 있다. 제안하는 마스크 예측 기법을 클러스터 기반의 missing-feature 복구 기법과 결합하여 음성 인식기에 적용함으로써 성능을 평가한다. 실험 결과는 제안한 기법이 백색 잡음, 자동차잡음, 배경 음악환경에서 기존의 방법에 비해 향상된 성능을 가짐을 입증한다.

A person detection in HEVC bitstream domain based on bits density feature and YOLOv3 framework

  • Wiratama, Wahyu;Sim, Donggyu
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.169-171
    • /
    • 2019
  • This paper proposes an algorithm to detect persons in bitstream domain by skipping a reconstruction picture process in HEVC decoding. A new 3-channel feature extraction map is introduced in this paper by modelling the relationship between bits per CU density, average PU shape in CU, and total transform coefficients in CU from syntax elements. A state-of-the-art of YOLOv3 detection algorithm is used to detect and localize person on extracted feature maps. Based on the experimental results, the proposed person detection framework can achieve mAP of 0.68 and be able to find persons on feature maps. In addition, the proposed person detection can save decoding time about 60% by removing reconstruction picture process.

  • PDF

Attention-based for Multiscale Fusion Underwater Image Enhancement

  • Huang, Zhixiong;Li, Jinjiang;Hua, Zhen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권2호
    • /
    • pp.544-564
    • /
    • 2022
  • Underwater images often suffer from color distortion, blurring and low contrast, which is caused by the propagation of light in the underwater environment being affected by the two processes: absorption and scattering. To cope with the poor quality of underwater images, this paper proposes a multiscale fusion underwater image enhancement method based on channel attention mechanism and local binary pattern (LBP). The network consists of three modules: feature aggregation, image reconstruction and LBP enhancement. The feature aggregation module aggregates feature information at different scales of the image, and the image reconstruction module restores the output features to high-quality underwater images. The network also introduces channel attention mechanism to make the network pay more attention to the channels containing important information. The detail information is protected by real-time superposition with feature information. Experimental results demonstrate that the method in this paper produces results with correct colors and complete details, and outperforms existing methods in quantitative metrics.

3차원 형태 특징의 사전 학습을 이용한 기하 복원 (Geometry Reconstruction Using Dictionary Learning of 3D Shape Features)

  • 황정민;윤여진;최수미
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제23권1호
    • /
    • pp.57-65
    • /
    • 2017
  • 본 논문에서는 포인트 클라우드로 구성된 모델 내의 오류를 줄이고, 기하학적 형태를 복원하기 위한 사전 학습 방법을 제시한다. 이를 위해, 대상 모델과 유사한 형태 특징을 갖는 모델로부터 3차원 특징 정보를 추출하여 사전을 구성하고, 이를 통해 기하 복원을 수행한다. 본 연구에서 제시한 방법은 다음과 같이 세 단계로 구성된다. 첫째, 유사 모델로부터 기하 패치를 구성하는 단계, 둘째, 획득한 패치의 3차원 형태 특징을 학습하는 단계, 셋째, 학습된 사전을 이용하여 기하를 복원하는 단계이며, 최종적으로 원본 모델과 복원 결과의 오차를 계산하며, 복원 결과의 정확도를 확인한다.

연속적인 이미지를 이용한 3차원 장면의 사실적인 복원 (Realistic 3D Scene Reconstruction from an Image Sequence)

  • 전희성
    • 정보처리학회논문지B
    • /
    • 제17B권3호
    • /
    • pp.183-188
    • /
    • 2010
  • 본 연구에서는 여러 이미지를 이용하여 사실적인 3차원 장면의 모델을 얻는 방법이 구현되었다. 이미지는 파라메터를 모르는 카메라를 이용하여 여러 위치에서 획득한 것을 사용하였다. 먼저 특징점 추출 및 추적 방법을 사용하여 모든 이미지에 대한 대응점들을 구하고 이 점들을 사용하여 사영복원을 구한다. 그 다음 사영 복원된 값에 여러 제약조건을 사용하여 유클리디언 복원을 하면 특징점들의 3차원 좌표값이 계산된다. 이 좌표값을 이용하여 삼각형 메쉬를 구한 후 이 면에 텍스처 맵핑을 하면 사실적인 복원이 완성된다. 전체 시스템은 C++언어로 구현하였으며, 사용자 인터페이스는 Qt 라이브러리로, 텍스처 맵핑과 모델 가시화 부분은 OpenGL 그래픽스 라이브러리로 구현하였다. 구현된 시스템의 효용성을 보이기 위해 모의 데이터와 실제 이미지 데이터를 이용하여 실험한 결과를 포함하였으며 만족할 만한 복원 결과를 얻을 수 있었다.