• Title/Summary/Keyword: feature extract

Search Result 1,160, Processing Time 0.025 seconds

Application Consideration of Machine Learning Techniques in Satellite Systems

  • Jin-keun Hong
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.48-60
    • /
    • 2024
  • With the exponential growth of satellite data utilization, machine learning has become pivotal in enhancing innovation and cybersecurity in satellite systems. This paper investigates the role of machine learning techniques in identifying and mitigating vulnerabilities and code smells within satellite software. We explore satellite system architecture and survey applications like vulnerability analysis, source code refactoring, and security flaw detection, emphasizing feature extraction methodologies such as Abstract Syntax Trees (AST) and Control Flow Graphs (CFG). We present practical examples of feature extraction and training models using machine learning techniques like Random Forests, Support Vector Machines, and Gradient Boosting. Additionally, we review open-access satellite datasets and address prevalent code smells through systematic refactoring solutions. By integrating continuous code review and refactoring into satellite software development, this research aims to improve maintainability, scalability, and cybersecurity, providing novel insights for the advancement of satellite software development and security. The value of this paper lies in its focus on addressing the identification of vulnerabilities and resolution of code smells in satellite software. In terms of the authors' contributions, we detail methods for applying machine learning to identify potential vulnerabilities and code smells in satellite software. Furthermore, the study presents techniques for feature extraction and model training, utilizing Abstract Syntax Trees (AST) and Control Flow Graphs (CFG) to extract relevant features for machine learning training. Regarding the results, we discuss the analysis of vulnerabilities, the identification of code smells, maintenance, and security enhancement through practical examples. This underscores the significant improvement in the maintainability and scalability of satellite software through continuous code review and refactoring.

Statistical Speech Feature Selection for Emotion Recognition

  • Kwon Oh-Wook;Chan Kwokleung;Lee Te-Won
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4E
    • /
    • pp.144-151
    • /
    • 2005
  • We evaluate the performance of emotion recognition via speech signals when a plain speaker talks to an entertainment robot. For each frame of a speech utterance, we extract the frame-based features: pitch, energy, formant, band energies, mel frequency cepstral coefficients (MFCCs), and velocity/acceleration of pitch and MFCCs. For discriminative classifiers, a fixed-length utterance-based feature vector is computed from the statistics of the frame-based features. Using a speaker-independent database, we evaluate the performance of two promising classifiers: support vector machine (SVM) and hidden Markov model (HMM). For angry/bored/happy/neutral/sad emotion classification, the SVM and HMM classifiers yield $42.3\%\;and\;40.8\%$ accuracy, respectively. We show that the accuracy is significant compared to the performance by foreign human listeners.

A Study on Emotion based Information Retrieval System (감정기반 정보 검색시스템에 관한 연구)

  • Kim Myung-Gwan;Park Young-Taek
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.32 no.4
    • /
    • pp.105-115
    • /
    • 1998
  • In this paper, we propose a document clustering and retrieval tool which allows users to manage their emotion based document access. This system name is ECRAS(Emotion based Clustering and Retrieval Agent System). Our system extract S emotion feature which like HAPPY, SAD, ANGRY, FEAR, DISGUST from various document. And, our system have retrieve documents for user query base on emotion feature.

  • PDF

Fuzzy Mean Method with Bispectral Features for Robust 2D Shape Classification

  • Woo, Young-Woon;Han, Soo-Whan
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.313-320
    • /
    • 1999
  • In this paper, a translation, rotation and scale invariant system for the classification of closed 2D images using the bispectrum of a contour sequence and the weighted fuzzy mean method is derived and compared with the classification process using one of the competitive neural algorithm, called a LVQ(Learning Vector Quantization). The bispectrun based on third order cumulants is applied to the contour sequences of the images to extract fifteen feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to represent two-dimensional planar images and are fed into an classifier using weighted fuzzy mean method. The experimental processes with eight different shapes of aircraft images are presented to illustrate the high performance of the proposed classifier.

  • PDF

Tomato Crop Disease Classification Using an Ensemble Approach Based on a Deep Neural Network (심층 신경망 기반의 앙상블 방식을 이용한 토마토 작물의 질병 식별)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1250-1257
    • /
    • 2020
  • The early detection of diseases is important in agriculture because diseases are major threats of reducing crop yield for farmers. The shape and color of plant leaf are changed differently according to the disease. So we can detect and estimate the disease by inspecting the visual feature in leaf. This study presents a vision-based leaf classification method for detecting the diseases of tomato crop. ResNet-50 model was used to extract the visual feature in leaf and classify the disease of tomato crop, since the model showed the higher accuracy than the other ResNet models with different depths. We propose a new ensemble approach using several DCNN classifiers that have the same structure but have been trained at different ranges in the DCNN layers. Experimental result achieved accuracy of 97.19% for PlantVillage dataset. It validates that the proposed method effectively classify the disease of tomato crop.

이동로봇주행을 위한 영상처리 기술

  • 허경식;김동수
    • The Magazine of the IEIE
    • /
    • v.23 no.12
    • /
    • pp.115-125
    • /
    • 1996
  • This paper presents a new algorithm for the self-localization of a mobile robot using one degree perspective Invariant(Cross Ratio). Most of conventional model-based self-localization methods have some problems that data structure building, map updating and matching processes are very complex. Use of a simple cross ratio can be effective to the above problems. The algorithm is based on two basic assumptions that the ground plane is flat and two locally parallel sloe-lines are available. Also it is assumed that an environmental map is available for matching between the scene and the model. To extract an accurate steering angle for a mobile robot, we take advantage of geometric features such as vanishing points. Feature points for cross ratio are extracted robustly using a vanishing point and intersection points between two locally parallel side-lines and vertical lines. Also the local position estimation problem has been treated when feature points exist less than 4points in the viewed scene. The robustness and feasibility of our algorithms have been demonstrated through real world experiments In Indoor environments using an indoor mobile robot, KASIRI-II(KAist Simple Roving Intelligence).

  • PDF

Livestock Theft Detection System Using Skeleton Feature and Color Similarity (골격 특징 및 색상 유사도를 이용한 가축 도난 감지 시스템)

  • Kim, Jun Hyoung;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.586-594
    • /
    • 2018
  • In this paper, we propose a livestock theft detection system through moving object classification and tracking method. To do this, first, we extract moving objects using GMM(Gaussian Mixture Model) and RGB background modeling method. Second, it utilizes a morphology technique to remove shadows and noise, and recognizes moving objects through labeling. Third, the recognized moving objects are classified into human and livestock using skeletal features and color similarity judgment. Fourth, for the classified moving objects, CAM (Continuously Adaptive Meanshift) Shift and Kalman Filter are used to perform tracking and overlapping judgment, and risk is judged to generate a notification. Finally, several experiments demonstrate the feasibility and applicability of the proposed method.

Livestock Anti-theft System Using Morphological Feature-based Model (형태학적 특징 기반 모델을 이용한 가축 도난 판단 시스템)

  • Kim, Jun Hyoung;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.578-585
    • /
    • 2018
  • In this paper, we propose a classification and theft detection system for human and livestock for various moving objects in a barn. To do this, first, we extract the moving objects using the GMM method. Second, the noise generated when extracting the moving object is removed, and the moving object is recognized through the labeling method. And we propose a method to classify human and livestock using model formation and color for the unique form of the detected moving object. In addition, we propose a method of tracking and overlapping the classified moving objects using Kalman filter. Through this overlap determination method, an event notifying a dangerous situation is generated and a theft determination system is constructed. Finally, we demonstrate the feasibility and applicability of the proposed system through several experiments.

Fault Diagnosis of Induction Motors by DFT and Wavelet (DFT와 웨이블렛을 이용한 유도전동기 고장진단)

  • Kwon, Mann-Jun;Lee, Dae-Jong;Park, Sung-Moo;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.819-825
    • /
    • 2007
  • In this paper, we propose a fault diagnosis algorithm of induction motors by DFT and wavelet. We extract a feature vector using a fault pattern extraction method by DFT in frequency domain and wavelet transform in time-frequency domain. And then we deal with a fusion algorithm for the feature vectors extracted from DFT and wavelet to classify the faults of induction motors. Finally, we provide an experimental results that the proposed algorithm can be successfully applied to classify the several fault signals acquired from induction motors.

Feature Vector Extraction using Time-Frequency Analysis and its Application to Power Quality Disturbance Classification (시간-주파수 해석 기법을 이용한 특징벡터 추출 및 전력 외란 신호 식별에의 응용)

  • 이주영;김기표;남상원
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.619-622
    • /
    • 2001
  • In this paper, an efficient approach to classification of transient and harmonic disturbances in power systems is proposed. First, the Stop-and-Go CA CFAR Detector is utilized to detect a disturbance from the power signals which are mixed with other disturbances and noise. Then, (i) Wigner Distribution, SVD(Singular Value Decomposition) and Fisher´s Criterion (ii) DWT and Fisher´s Criterion, are applied to extract an efficient feature vector. For the classification procedure, a combined neural network classifier is proposed to classify each corresponding disturbance class. Finally, the 10 class data simulated by Matlab power system blockset are used to demonstrate the performance of the proposed classification system.

  • PDF