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Abstract

We evaluate the performance of emotion recognition via speech signals when a plain speaker talks to an 
entertainment robot. For each frame of a speech utterance, we extract the frame-based features: pitch, energy, formant, 
band energies, mel frequency cepstral coefficients (MFCCs), and velocity/acceleration of pitch and MFCCs. For 

discriminative classifiers, a fixed-length utterance-based feature vector is computed from the statistics of the 
frame-based features. Using a speaker-independent database, we evaluate the performance of two promising classifiers: 
support vector machine (SVM) and hidden Markov model (HMM). For angry/bored/happy/neutral/sad emotion 
classification, the SVM and HMM classifiers yield 42.3% and 40.8% accuracy, respectively. We 마｝ow that the 
accuracy is significant compared to the performance by foreign human listeners.

Keywords^ Emotion Recognition, Support Vector Machines, Hidden Markov Models

I. Introduction

Emotional human-computer interaction is one of emerging 
research fields in affective computing[l]. In particular, emotional 

human-robot interaction with an intelligent robot draws much 
attention because it can make the robot more human-like and 
more user-friendly. Emotion recognition and synthesis can be 
done through video signals and/or speech signals. Emotion 
recognition via a single modality, speech, is favorable in terms of 

computational complexity and required hardware.
Emotion recognition performance is hard to compare fairly 

because researchers have used different speech databases in then- 
works. First there is no consensus in the basic emotion set. Most 

of researchers counted 'angry', 'happy', 'sad', and 'surprise' 
emotion in the basic emotion set. A few researchers, however, 
added 'fear' and 'disgusted' emotion[2-3] and the MPEG-4 also 
defined the same 7 emotions as emotional styles including 
neutral[4]. Second, the speech databases showed different fluency
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in expressing emotion. Often, a trained actor played a given 
situation and hence expressed emotion better than ordinary 

speakers. In addition, the speech databases often had incom­
patibility in speaker-dependency, recording environments, or the 
number of words in an utterance. In spite of the above issues, we 
describe and compare previous systems to provide a general idea 

on the state-of-the-art performance level and technologies in 
feature extraction and emotion classification. The previous studies 

are summarized into three categories: Emotion recognition based 
on acoustic information only, combining linguistic information, 
and audio-visual emotion recognition.

By virtue of its simplicity, most of emotion recognition 
systems used only acoustic infbrmation[5-7]. Some researchers 
performed stressed/neutral style classification using the Teager 
energy operator and hidden Markov models for the Speech Under 
Simulated and Actual Stress (SUSAS) database[8-9]. Recently 
Ververidis et al. reported 51.6% accuracy with 5 emotion 
categories while human performance was 67.3%卩이.

Performance of emotion recognition largely depends on how 
we can extract relevant features invariant to speaker, language, 
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and contents. There are differences as well as similarities among 
cultures and languages in representing emotions[ll]. With this 
view, some researchers utilized linguistic information to improve 

classification accuracy. Polzin et al. used verbal information such 
as emotion-specific word choice, emotion-specific back-off 
language models and non-verbal information including prosody 
and spectral infbrmation[12]. Lee and Narayanan improved 
negative/non-negative detection accuracy by 40.7% for males by 
combining acoustic and linguistic infbrmation[13].

This paper reports emotion recognition performance in real 
situations where a person interacts with an entertainment robot. 

While most of previous studies[5-6] use speech data with strong 
emotion played by actors, this work uses speech data uttered by 
ordinary persons. We use only acoustic information for emotion 
recognition. Utilizing linguistic information needs a speech recog­
nizer, which increases system complexity and makes migration to 

other languages hard. This work also presents some insights into 
contribution of speech features to emotion recognition and gives 
comparative evaluation results of support vector machine 

(SVM)-based classifiers] 18] and hidden Markov model (HMM)- 
based classifiers] 15].

The rest of the paper is organized as follows: Section H 

describes the feature extraction algorithms, feature selection 
methods, and emotion classifiers adopted in our work. Section B 
describes the speech database, discusses contribution of each 
feature, and gives experimental results. The human performance 
and the factors affecting emotion recognition are discussed in 

Section IV. Conclusions are given in Section V.

II. Emotion Recognition

Figure 1 shows the block diagram of the emotion recognizer 
used in this work. In the feature extraction module, frame-based 

and utterance-based features are extracted. The feature selection 
module selects feature components to reduce the feature 
dimension. Finally an emotion classifier decides the emotion 
based on the feature components.

Energy, Pitch 
Formants 
Band energies 
MFCCs

Forward selection 
Backward elimination

SVM, HMM

Figure 1. Block diagram of an emotion recognizer.

2.1. Feature Extraction
Figure 2 shows the block diagram of the feature extraction 

module. The frame shift in feature extraction was 10 ms. We 
reduce noise by using the Wiener filter[17] and segment o미y 

speech parts from an input utterance by using an endpoint 
detector based on zero crossing rate (ZCR)[16] and frame energy. 
The frame size to extract all the frame-based features except 
pitch is 25 ms. In this paper, we regard that the "pitch" and 

"fundamental frequency** are interchangeable.

2.1.1. Frame-Based Features
In selecting the frame-based features, we have been inspired 

from the previous studies on the effects of emotion on 
acoustic-phonetic parameters[5]. Angry speech increases in mean 

pitch and mean intensity, has higher pitch variability and a wider 
range of pitch. Angry speech also has larger high frequency 
energy, a downward directed pitch contour and an increased rate 
of articulation. Sad speech shows decrease in mean pitch, pitch 
range, pitch variability. Sad speech has also the pitch contour 
downward directed; small high frequency energy and rate of 

articulation. Happy speech increases in pitch, pitch range, pitch 
variability and mean intensity. It also increases in high frequency 
energy and in rate of articulation. Spectral information embedded 
in formants and mel-frequency cepstral coefficients (MFCCs) also 
reflects the characteristics of speech wavefbrm[14]. Details of the 
frame-based features are described in the fbllowings.

a Energy
We use the log energy defined as the log of sum of absolute 

sample values.

■ Pitch

Pitch is estimated by finding the time shift that minimizes the 
average mean difference function (AMDF)[16]. We use the frame 

size of 60 ms in order to include at least 3 pitch periods in a 
frame assuming the minimum pitch is 50 Hz. A frame of speech 
data is windowed by the Hanning window. Every frame is 
classified into voiced/unvoiced/silence using energy and ZCR. 
This information is used to derive some statistics from only 
voiced regions. For example, a continuous contour is needed to 
compute linear regression coefficients for pitch. The pitch is set 
to 0 if the frame is not voiced. The time index with the 
minimum AMDF at the current frame is searched in the plausible 

range, which is computed by extrapolating the index of the 
previous last voiced frame based on the maximum admissible 

Statistical Speech Feature Selection for Emotion' Recognition 145



change of pitch. For the maximum admissible pitch change, we 
use 20% at the start of voiced frames and 10% at the inside of 
voiced frames. If the index is found outside the plaxisible range, 
the range is doubled and the same search procedure is repeated. 
Finally the pitch contour is smoothed with a median filter of 
length 7 to remove spurious pitch v시ues.

・ Formant frequencies
The three formant frequencies (Fl, F2, and F3) of a frame are 

computed from the poles of the all-pole filter which models the 
vocal tract[16]. The linear predictive coding (LPC) coefficients 

are computed by using the autocorrelation method[17]. We 
smooth formant trajectories with a median filter of length 7 and 
reduce discontinuities as much as possible by post-processing[ 16]. 

The formant frequencies are set to 0 for unvoiced or silent 
frames.

・ Band energies
To obtain band energies, we first compute 23 filter-bank 

coefficients using the feature extraction standard proposed by 
European Telecommunication Standard Institute (ETSI) for 
distributed speech recognition[17]. After partitioning the filter 

bank coefficients into 4 bands, we obtain the band energy by 
summing all coefficients allocated to a band. The first 3 bands 

included 5 coefficients sequentially starting from the first 
coefficient the last band included the remaining 8 coefficients.

• MFCCs
The MFCCs are also computed using the ETSI feature 

extraction standard[17]. Only the first two MFCCs are used 
because the two low-order coefficients represent the overall shape 
of the spectrum while the higher coefficients depend on the 

phonemic identity of the speech signals.

・ Adding Velocity and Acceleration

This module works(mly for frame-based classification in order

Figure 2. Block diagram of feature extraction.

to consider the speaking rate. Our preliminary experiments have 

shown that a faster utterance shows larger pitch variation and 
spectral change. We add the velocity and acceleration information 

for pitch and MFCCs, which is widely . used for speech 
recognition to model speech dynamics efficiently[19]. The 

velocity information vel(t) is obtained by filtering the 
corresponding pitch and MFCC contours in the temporal direction 
with a finite impulse response (FIR) filter with the tenporal 
width of 3 frames in our experiments.

To reflect the spectral change, the variable spch (t) is defined 
as the Euclidean norm of the velocity vector for the 12 MFCCs. 

We compute the spectral change from MFCCs to share 
computational burden although it may be calculated from the 
filter-bank coefficients.

To fiirther model the dynamical aspects of the pitch and 
MFCCs, we use the acceleration information acc(t), which is 
obtained by filtering the velocity information using the same FIR 
filter.

Resulting 15 frame-based features constitute a feature vector 
for HMM-based classifiers.

2.1.2. Utterance-Based Features
While the frame-based features can be used for emotion 

classification in case of frame-based classifiers such as HMM, we 

need to convert the frame-based features into a fixed-length 
feature vector when a back-end classifier works for static pattern 

recognition, e.g., for SVM. Regarding every frame-based feature 
as a feature stream, we compute different statistics[24] according 

to the nature of the frame-based feature and obtain an 
utterance-based feature vector with the dimension of 59 for each 
utterance. The pitch and fbrmant frequencies in unvoiced and 
silence regions are interpolated from adjacent frames so that there 
are no discontinuities on the contours.

-Computing Statistics

For the pitch stream, we compute 11 statistics the mean, 
standard deviation, maximum (90th percentile), range between the 
maximum and minimum (the 10th percentile), skewness, the 
value of the first frame, the value of the last frame. Another 4 
statistics are the mean pitches and linear regression coefficients 
of the first and last voiced segments. We use the 10th and 90th 
percentile instead of the minimum and maxirmim values of the 
base features to avoid spurious outliers in obtaining the range. 
The first and the la아 voiced segments were considered to reflect 
the fact that energy and pitch of the start and end of an utterance 
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are affected by emotional states.
For the energy stream, we compute 7 statistics: range, low 

band energy, high band energy, standard deviation, skewness, and 
the regression coefficients of the first and last voiced segments. 
We subtract the mean log energy to normalize amplitude 
according to the speaker's volume.

For the 3 formant frequency streams, we confute 5 statistics 
each: the mean, standard deviation, maximum, range, and mean 
distance from the mean pitch.

For the 2 MFCC streams, the maximum, range, mean, and 
standard deviation were computed, respectively. For the 4 
mel-band energies, the mean value was computed for each 
coefficient. For velocity components of pitch and MFCCs, we 
obtain the maximum, range, mean absolute value, and standard 

deviation. For acceleration components of pitch and MFCCs, we 
use the range and mean absolute value.

We add two duration-dependent components derived from 
MFCCs. One is the mean MFCC distance between adjacent 
frames and the other is the duration in frames divided by the 
mean MFCC distance.

2.2. Feature Selection
Among the many derived features, we want to identify those 

that contribute more in the classification. This tells us what 
features and properties of speech are important in distinguishing 
emotions. Because the feature vector usually has very large 
dimension, we can improve accuracy as well as reduce the 
computational complexity by selecting good features.

However, it is forbiddingly time consuming to perform 

exhaustive search for the subset of features that give best 
classification. Instead, we used the forward selection and 

backward elimination methods[20] to rank the features and 
identify the subset that contributes more in classification. Forward 
selection sequentially adds one feature at a time, choosing the 
next one that most increases classification accuracy. Backward 
elimination starts with the set of all input features and 
sequentially deletes the next feature that results in least decrease 
classification errors. Figures 3 and 4 show the pseudocode of the 
forward selection and backward selection algorithms, respectively.

2.3„ Classification
We compared the performance of classifiers based on 

discriminative and generative models by using SVM[18] and 
respectively.

function ForwardSelection
SelectfO] = {);
Remain = (All features);
for n=1 to numFeatures
for each f in Remain
Temp = Select[n-1] + f;

bestAcc = 0; bestFeat = {);
Train and test using Temp feature set;
Compute classification accuracy acc;
if acc> bestAcc then

bestAcc = acc;
bestFeat = Temp;

end
end .
Select[n]=bestFeat;

end

Figure 3. Forward selection algorithm.

function BackwardSelection
Select[numFeatures] = (All features);
Remain 그 {};

for n=numFeatures-1 to 1
for each f in S이ect

Temp 느 S이ect[n+1] - f;
bestAcc = .0; bestFeat =
Train and test using Temp feature set;
Compute classification accuracy acc;
if acc> bestAcc then

bestAcc = acc;
bestFeat = Temp;

end
end
Select[n]=bestFeat;

end

Figure 4, Backward selection algorithm.

The SVM is a recently developed technique for solving a 
variety of binaiy classification and regression problems. 
Commonly used kernel functions include the linear, polynomial, 
Gaussian, and sigmoidal kernels. Hsu and Lin[21] compared 

various methods proposed to extend the binary SVM to 
multi-class. They found that the "one-against-one11 method is the 
most suitable fbr practical use. We used a MATLAB interface 
version of their LIBSVM[22] fbr the multi-class problem in 
emotion recognition.

In HMM-based classification] 15], each feature stream is 
assumed to be generated from a first-order hidden Markov 
process. In each state of a Markov process, a feature has the 
observation probability given by a mixture of Gaussian pdfs. We 
computed the log likelihood of the feature stream and decide the 
emotion with the maximum likelihood as the final 이ossification 
result. The HMM-based classifier has the advantages over other 
static discriminative classifiers that frame length normalization is 
not necessary. Short-time temporal dynamics is implicitly
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Table 1. Confusion matrix (%) of multi-class Gaussian SVM.

Angry B 이，ed Happy Neutral Sad
Angry 60.2 85 19.5 9.3 2.4
Bored 137 37.9 14 7 15.0 18.8
Happy 34.3 9.3 40.7 11.3 44
Neutr 기 25.0 23.0 12.3 29.3 10.3

Sad 8.5 34.9 6.4 132 37.0

covariance matrices.
Table 2. Confusion matrix (%) of HMM-based 이assifier with diagonal

Angry Bored Happy Neutral Sad
Angry 61.7 4.1 20.1 11.9 22
Bored 11.8 290 17.2 264 15.6
Happy 30.2 5.2 43.4 19.3 2.0
Neutral 25.0 138 19.1 32.9 92

Sad 12 4 274 7.4 234 29.4

modeled through the addition of velocity and acceleration 
components. However, the HMM classifier still has a weakness 

in modeling long-time dynamics.

III. Experimental Results

3.1. Speech Database
We used the German emotional database recorded with the 

Sony entertainment robot, AIB0[14]. The sampling frequency 

was 16 ffiz. This database included commands or short greetings 
with several words. Emotion expression was mostly weak so th건 

even native speakers were often confused about the emotion of 
the utterances. The set of emotions used in the experiments 
included 5 emotion classes: angry, bored, happy, ne니tral and sad. 

3534 utterances were used as the training data set and the 
remaining 1681 utterances were used as the test data set (2:1 data 
ratio). The trah血g data set included 10 male and 10 female 
speakers and the test data set included independently another 5 

male and 5 female speakers. We used the 2:1 ratio because 
preliminary experiments with a different organization (4:1 data 

ratio) had yielded almost similar classification results.

3.2. SVM-Based Classification
We used all 59 features in SVM-based classification 

experiments. The Gaussian SVM gave the best multi-class 
classification on the emotion data. Table 1 shows the confusion 

matrix, and Gaussian SVM achieved an overall accuracy of 
42.3%. The easiest to detect was angry emotion and the next 
easiest ones were happy, bored, and sad emotions. Neutral speech 
was often misclassified as emotional speech. We note that the 
confiision matrix is asymmetric. Neutral speech is more often 
misclassified to angry speech that angry speech to neutral speech.

3.3. HMM-Based Classification
We used the HTK[19] to test the performance of the 

HMM-based classifier. The covariance of a state was diagonal 

matrix. All emotion models had the same number of states and 
mixtures. The silence model was used in the beginning and 
ending of an utterance and its number of states was set to 5. 
Table 2 shows the classification results for 16 Gaussian mixtures 
with diagonal covariance matrices. The performance was 

improved mostly through increasing the number of states, that is, 
detailed temporal modeling. The average classification accuracy 

was 40.8%. This accuracy improvement was not significant 
because the 95% confidence interval in the significance test was 

±2.4%. Classification accuracy with full covariance matrices, not 
shown here, was similar to the diagonal matrix case.

3.4. Group Feature Selection Results
We performed group feature selection based on a multi-class 

classifier. We divided the 59 features into 13 groups: pitch, pitch 
velocity, pitch acceleration, energy, Fl, F2, F3, mel-band energy, 
MFCC velocity, MFCC acceleration, MFCC1, MFCC2 and 
duration. We used the same methodology as in the individual 
feature selection case. But in this case, we considered a feature 

group at each step of addition or deletion.
The mean true positive (TP) rate over the five emotions was 

used as the criteria for selecting the next feature to inchide or 
delete. We perfonned feature selection by cross-validation on the 
training data. The test data were used afterward only to assess 
the feature selection result. First, we divided the training data 
into 5 partitions. To achieve speaker independent feature 
selection, the 5 partitions contain mutually exclusive speakers. In 
forward selection, at each stage of adding the next feature group, 

each partition took turns to be the "held-out" set while the 
classifier was trained on the rest four. The TP rates over the five 
partitions were then combined to determine which feature group 
should be added. Backward elimination was done in a similar 

fashion.
To minimize the effect of random partitioning, the process of 

forward selection (and backward elimination) was repeated five 
times, each with a different random partitioning of the training 
data. A total of five rankings of the features were obtained from 
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forward selection, and another five were obtained from backward 
elimination. In Figure 5, we plot the cross-validation true positive 
rate of the training data (''selection TP”)against the number of 
features included from backward elimination. Thin dotted lines 
represent results from the 5 different partitions, while the thick 
dashed line is their average in the upper side. Plotted together are 
the TP rates on the test data ("verify TP"), again the average of 
5 random partitions in the thick dashed line and each individual 

one in thin dotted lines in the lower side.
Similarly in Figure 6 plotted are the results from forward 

selection. Both plots show that roughly 30 features contribute 
most to classification and best represent the data. Simple voting 

was used to combine the five rankings from forward selection 
into one single ranking. The same was done for backward

Forward Group Features Selection by Gaussian SVM 
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Table 3. Classification accuracy as the feature set size increases.

Added feature 
group (size)

Total number of 
features

Accuracy (%)

energy (7) 7 33.1

velPitch (4) 11 36.3

pitch (11) 22 37.0

mfcc1 (4) 26 39.7

f1 (5) 31 40.1

All features 59 42.3

elimination.
The features are then plotted in Figure 7 on a two dimensional 

space where the x-y coordinate of each feature is its rank by the 

backward and forward selection. In general the ranking by 
forward and backward selection agree with each other. Feature 

groups near origin are considered to be more important in 
emotion recognition. This figure implies that energy, pitch 

velocity, pitch, low-order MFCCs, and Fl contribute to emotion 
recognition while F2, F3, mel-band energy, duration, and 

acceleration components are less important.

3.5. Performance of Feature Selection
Starting from the empty feature, we added a group of features 

in the order of the rank given by the forward selection results 
and evaluated the average classification accuracy. Table 3 shows 
the results, which implies that。끼y 31 features achieves 40.1% 

accuracy.
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IV. Discussion

4.1. Comparing with the Human Performance
To compare our emotion recognizer with human classifiers, 

each of 3 graduate listeners classified 479 utterances sampled 
randomly from the test set. The listeners were totally foreign to 
the German language. For fair comparison, we trained the 
listeners with the same amount of training data used for training 

SVM. This situation is well comparable to our experimental 
setup. Table 4 is the resulting confusion matrix, which shows that 

the average human classification accuracy is 40.9%, which is 
within the confidence interval of 2.4%. For normative listeners, 
humans and machines yield similar performance. Even humans 

cannot classify emotion with high accuracy without linguistic or 
visual information. Recent evaluation results by native human 

listeners also show that humans do not perform significantly 
better than a machine[23].

In the preliminary experiment, the same 3 graduate students 
classified the test set without listening to the training set. The 

classification accuracy was near the chance level of 20%. We 
also performed similar experiments with 3 graduate students 

majoring in the German language, who did not listen to the 
training set. The classification accuracy was also near random 
selection accuracy because there were no particular association 

emotion and linguistic contents in the database. These two 
additional experiments show that normative listeners who have 
the knowledge of the target language still have difficulties in 
recognizing emotion if the utterance does not have some 

meanings associated with emotion.

4.2. Factors Affecting Emotion Recognition 
Accuracy

The performance difference between the SVM and HMM-based 
classifiers was shown to be similar. This fact implies that 
classification accuracy does not largely depend on the class of 
classifiers. Performance difference with different discriminative 
algorithms is not significantly different. Good feature extraction 
is a more critical factor in emotion recognition than classifier 
selection. When discriminative classifiers are used, good 
feature-length normalization scheme is also important. The final 

accuracy is largely affected by the performance of core 
component modules in feature extraction, e.g., pitch tracking and 

fbrmant tracking. .
Further study is required regarding the exploration of new

Table 4. Confusion matrix (%) of foreign listeners after training.

Angry Bored Happy Neutral Sad
Angry 43.3 9.4 23.9 15.4 4.9
Bored 8.2 37.7 7.1 13.9 37.5
Happy 25.2 7.7 45.5 22.3 5.9
Neutral 19.1 17.8 16.5 377 11.5

Sad 4.3 27.3 7.1 10.6 40.3

features better representing prosody and timbre, the improvement 
of the pitch and fbrmant tracking algorithm, and the development 

of a more systematic approach to model dynamics of feature 

streams.

V. Conclusion

Using pitch, energy, formant frequencies, mel-band energies, 
MFCCs as base features, we analyzed the effects of the features 
in emotion recognition. Analyzing the factors of candidate 

features contributing to emotion recognition, we found that pitch 
and energy are the most significant feature in emotion 
recognition, which is consistent with the previous theoretical 
studies. We performed emotion recognition experiments using 
SVM- and HMM-based classifiers. With the SVM-based 
classifier, we achieved 42.3% of emotion classification accuracy 
using 5 emotion classes: angry, bored, happy, neutral and sad. 
The HMM-based classifier showed similar performance at 40.8%. 

The machine classifiers performance was shown to be significant 
when compared with the human performance.
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