• Title/Summary/Keyword: feature extract

Search Result 1,160, Processing Time 0.031 seconds

문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에서의 텍스트 영역 추출 (Text Region Extraction using Pattern Histogram of Character-Edge Map in Natural Images)

  • 박종천;황동국;이우람;권교현;전병민
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2006년도 추계학술발표논문집
    • /
    • pp.220-224
    • /
    • 2006
  • 자연이미지에 포함된 텍스트는 많은 중요한 정보를 포함하고 있다. 그러므로 자연이미지에서 텍스트를 추출할 수 있다면 다양한 분야에서 활용될 수 있다. 본 논문에서는 문자-에지 맵 패턴 히스토그램 분석함으로서 텍스트 영역을 추출하는 방법을 제안한다. 캐니-에지 검출기로 에지를 추출하여 16가지 에지 맵을 생성하고, 에지 맵을 조합하여 문자 특징을 갖는 8가지 문자-에지 맵을 생성한다. 8가지 문자-에지 맵과 16가지 에지 맵을 이용하여 텍스트 후보 영역을 추출하고, 문자-에지 맵의 패턴 히스토그램 및 텍스트 영역의 구조적 특징을 이용하여 텍스트 후보 영역에 대한 검증을 수행하였다. 제안한 방법은 다양한 종류의 자연이미지를 대상으로 실험하였고, 복잡한 배경, 다양한 글꼴, 다양한 텍스트 컬러로 구성된 자연이미지에서 텍스트 영역을 효과적으로 추출하였다.

  • PDF

유도전동기의 고장 진단을 위한 효과적인 특징 추출 방법 (An Effective Feature Extraction Method for Fault Diagnosis of Induction Motors)

  • 흥 뉘엔;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권7호
    • /
    • pp.23-35
    • /
    • 2013
  • 본 논문은 고장 분류 시스템을 위해 진동 신호로부터 특징 벡터를 자동적으로 추출하는 효과적인 기법을 제안한다. 기존의 멜-주파수 캡스트럼 계수는 진동신호의 노이즈에 민감하여 분류 정확도를 감소시키는 단점이 있다. 이러한 문제를 해결하기 위해 본 논문은 4단계 필터 뱅크로 구성된 스펙트럴 엔벨로프 캡스트럼 계수 분석을 제안하며, 4단계는 (1) 모든 진동 신호의 스펙트럴 엔벨로프를 기술하기 위한 선형 예측 코딩 알고리즘 사용 단계, (2) 일반적인 스펙트럴 모양을 얻기 위해 모든 엔벨로프의 평균화 단계, (3) 평균 엔벨로프와 그 주파수의 최대값을 찾기 위한 기울기 하강 방법 사용 단계, (4) 엔벨로프의 주파수 사이의 거리로부터 계산된 중앙값을 얻는데 사용되는 비 중첩 필터 뱅크 단계로 구성된다. 이4-단계필터뱅크는 특징벡터를 추출하기위해 캡스트럼 계수 계산에 사용된다. 마지막으로 유도전동기의 결함 형태를 구분하기 위해 이러한 특수 파라미터를 사용하는 다중 계층 서포트 벡터 머신을 사용한다. 모의실험 결과, 제안하는 방법은 약 99.65%의 분류 성능을 보이며, 동시에 기존 방법들보다 우수한 성능을 보인다.

안드로이드 기반 앱 악성코드 탐지를 위한 Feature 선정 및 학습모델 제안 (Suggestion of Selecting features and learning models for Android-based App Malware Detection)

  • 배세진;이정수;백남균
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.377-380
    • /
    • 2022
  • 앱(App)이라 불리는 응용프로그램은 모바일 기기 등에 다운받아 사용 가능하다. 그 중 안드로이드(Android) 기반 앱은 오픈소스 기반으로 구현되어 누구나 악용 가능하다는 단점이 있지만, 아주 일부분의 소스코드를 공개하는 iOS와는 달리 안드로이드는 오픈소스로 구현되어있기 때문에 코드를 분석할 수 있다는 장점도 있다. 하지만, 오픈소스 기반의 안드로이드 앱은 누구나 소스코드 변경에 참여 가능하기 때문에 그만큼 악성코드가 많아지고 종류 또한 다양해질 수밖에 없다. 단기간에 기하급수적으로 늘어나는 악성코드는 사람이 일일이 탐지하기 어려워 AI를 활용하여 악성코드를 탐지하는 기법을 사용하는 것이 효율적이다. 기존 대부분의 악성 앱 탐지 방안은 Feature를 추출하여 악성 앱을 탐지하는 방안이 대부분이다. 따라서 Feature 추출 후 학습에 사용할 최적의 Feature를 선정(Selection)하는 3가지 방안을 제안한다. 마지막으로, 최적의 Feature로 모델링을 하는 단계에서 단일 모델 이외에도 앙상블 기법을 사용한다. 앙상블 기법은 이미 여러 연구에서 나와 있듯이 단일 모델의 성능을 뛰어넘는 결과를 보여주고 있다. 따라서 본 논문에서는 안드로이드 앱(App) 기반 악성코드 탐지 최적의 Feature 선정과 학습모델을 구현하는 방안을 제시한다.

  • PDF

단면이 원인 3차원 물체의 특징 추출 (Feature Extraction of the 3-Dimensional Objects with Circular Cross Sections)

  • 조동욱
    • 한국정보처리학회논문지
    • /
    • 제3권4호
    • /
    • pp.866-876
    • /
    • 1996
  • 본 논문에서는 단면이 원이 3차원 물체의 특징 추출 방법을 제안하고자 한다. 고 기능의 물체 인식 시스팀을 구현하기 위해서는 2차원 영상과 3차원 영상의 정보를 효과적으로 추출, 취합하는 시스팀을 구축하여야만 한다. 이를 위해 2차원 영상과 3차원 영상의 정보를 추출하는 방법을 다루며 이를 단면이 원인 물체를 중심으로 제안하고자 한다. 단면이 원인 물체의 특징 정보로는 모양 정보와 기하학적 정보가 이용된다. 이를 위해 모양 정보는 Z축기울기를 제안하여 이의 특성을 파악하여 모양 정보를 추출하였으며, 기하학적 정보는 표면에서 법선 벡터들의 교점 특성을 이용하여 추출하였다. 또한 보다 세밀할 인식을 위해 표면 영역들간의 특징값을 추출하는 방 법을 제안하며 최종적인 인식 효율을 위해 기능 정보를 추출하는 방법도 다루었다. 끝으로 본 논문의 유용성을 실험에 의해 입증하고자 한다.

  • PDF

선군집분할방법에 의한 특징 추출 (Feature Extraction by Line-clustering Segmentation Method)

  • 황재호
    • 정보처리학회논문지B
    • /
    • 제13B권4호
    • /
    • pp.401-408
    • /
    • 2006
  • 영상신호의 수직축 및 수평축 화소 성분 분석을 통해서, 영상 내부에 존재하는 각 영역의 군집적 특성을 통계 및 영역적으로 처리 분류함으로써 필요한 특징을 추출할 수 있는 새로운 형태의 영역분할처리 알고리즘을 제시한다. 종래의 점처리나 면처리 방식에 비해 이 방식은 수평축과 수직축 상에서의 연속적인 선처리 방식이라고 할 수 있다. 영상을 구성하는 영역간 경계가 암시적으로 구분되어 있으나, 명시적으로는 불투명하고, 영상 특성의 분기점 또한 불명확하고 중복되어 있음으로 인하여 문턱치처리나 분기점처리로 그 영역간 특정을 분할, 추출하기가 곤란한 경우에 이 방식은 우수한 효과가 있다. 수평축 및 수직축 선처리를 통해 각 영역들의 특성들을 군집으로 처리한 다음 처리한 축과 수직 방향으로 축차적 적응진행처리한다. 그 결과 영상 내 각 영역은 화소값의 중복에도 불구하고 하나의 군집으로 자리매김하면서 군집 고유의 화소 값을 갖는다. 그리고 처리후 영상은 각 군집에 부여한 새로운 화소값으로 변환함으로 필요한 특정이 추출된다. 이 방식은 특히 영역 분할을 통해 시각적 효과를 극대화시킬 필요가 있는 경동맥 초음파 의료영상에서 우수한 결과를 보였다.

임베디드 환경에서 SIFT 알고리즘의 실시간 처리를 위한 특징점 검출기의 하드웨어 구현 (A Hardware Design of Feature Detector for Realtime Processing of SIFT(Scale Invariant Feature Transform) Algorithm in Embedded Systems)

  • 박찬일;이수현;정용진
    • 대한전자공학회논문지SD
    • /
    • 제46권3호
    • /
    • pp.86-95
    • /
    • 2009
  • SIFT(Scale Invariant Feature Transform) 알고리즘은 영상 데이터로부터 객체의 꼭지점이나 모서리와 같이 색상 성분의 차가 심한 영역에서 특징점을 찾아 벡터성분을 추출하는 알고리즘으로, 현재 얼굴인식, 3차원 객체 인식, 파노라마, 3차원 영상 복원 작업의 핵심 알고리즘으로 연구 되고 있다. 본 논문에서는 SIFT 알고리즘을 임베디드 환경에서 실시간으로 처리하기 위해 가장 연산량이 많은 특징점 위치 결정 단계를 Verilog HDL 언어를 이용하여 FPGA로 구현하고 그 성능을 분석한다. 하드웨어는 100MHz 클럭에서 $1,280{\times}960$영상기준 25ms, $640{\times}480$영상기준 5ms의 빠른 연산속도를 보인다. 그리고 Xilinx Virtex4 XC4VLS60 FPGA를 타겟으로 Synplify Pro 8.1i합성툴을 이용하여 합성시 약 45,792LUT(85%)의 결과를 나타낸다.

SURF 기반 특징점 추출 및 서술자 생성의 FPGA 구현 (FPGA Implementation of SURF-based Feature extraction and Descriptor generation)

  • 나은수;정용진
    • 한국멀티미디어학회논문지
    • /
    • 제16권4호
    • /
    • pp.483-492
    • /
    • 2013
  • SURF는 영상의 특징점을 추출하고 서술자를 생성하는 알고리즘으로 객체인식 및 추적, 파노라마 이미지 생성 등 여러 영상처리 시스템에 응용되고 있다. SURF 알고리즘은 영상의 크기, 회전, 시점 등의 변화에 강인한 특징을 갖지만 복잡하고 반복적인 연산이 많아 실시간 처리가 어렵다. 실제 PC(Pentium, 3.3GHz) 환경에서 1000개 정도의 특징점이 추출되는 VGA($640{\times}480$) 해상도의 영상을 이용하여 실험한 결과 특징점 추출 및 서술자 생성에 총 240ms 이상이 걸려 약 4frame/sec로 실시간 처리가 불가능한 것을 확인하였다. 본 논문에서는 SURF 알고리즘의 메모리 접근 패턴을 분석하여 라인 메모리를 효율적으로 구성해 메모리 사용을 최소화하고 반복적으로 수행되는 연산을 병렬처리 하는 방법으로 하드웨어를 설계하였다. 하드웨어 설계 검증 결과 Xilinx사의 Virtex5LX330 FPGA를 타겟으로 합성 시 101,348LUTs(66%)와 1,367KB의 내부 메모리를 사용하고, 100MHz 동작 클록에서 30 frame/sec로 실시간 처리가 가능함을 볼 수 있었다.

신경회로망 기반 고장 진단 시스템을 위한 고장 신호별 특징 벡터 결정 방법 (Feature Vector Decision Method of Various Fault Signals for Neural-network-based Fault Diagnosis System)

  • 한형섭;조상진;정의필
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1009-1017
    • /
    • 2010
  • As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. For effective fault diagnosis, this paper used MLP(multi-layer perceptron) network which is widely used in pattern classification. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes the decision method of the proper feature vectors about each fault signal for neural-network-based fault diagnosis system. We applied LPC coefficients, maximum magnitudes of each spectral section in FFT and RMS(root mean square) and variance of wavelet coefficients as feature vectors and selected appropriate feature vectors as comparing error ratios of fault diagnosis for sound, vibration and current fault signals. From experiment results, LPC coefficients and maximum magnitudes of each spectral section showed 100 % diagnosis ratios for each fault and the method using wavelet coefficients had noise-robust characteristic.

필터 뱅크 에너지 차감을 이용한 묵음 특징 정규화 방법의 성능 향상 (Performance Improvements for Silence Feature Normalization Method by Using Filter Bank Energy Subtraction)

  • 신광호;최숙남;정현열
    • 한국통신학회논문지
    • /
    • 제35권7C호
    • /
    • pp.604-610
    • /
    • 2010
  • 본 논문에서는 기존의 CLSFN (Cepstral distance and Log-energy based Silence Feature Normalization) 방법의 인식성능을 향상시키기 위하여, 필터 뱅크 서브 밴드 영역에서 잡음을 차감하는 방법과 CLSFN을 결합하는 방법, 즉 FSFN (Filter bank sub-band energy subtraction based CLSFN)을 제안하였다. 이 방법은 음성으로부터 특징 파라미터를 추출할 때 필터 뱅크 서브 밴드 영역에서 잡음을 제거하여 켑스트럼 특징을 향상시키고, 이에 대한 켑스트럼 거리를 이용하여 음성/묵음 분류의 정확도를 개선함으로써 기존 CLSFN 방법에 비해 향상된 인식성능을 얻을 수 있다. Aurora 2.0 DB를 이용한 실험결과, 제안하는 FSFN 방법은 CLSFN 방법에 비해 평균 단어 정확도 (word accuracy)가 약 2% 향상되었으며, CMVN (Cepstral Mean and Variance Normalization)과의 결합에서도 기존 모든 방법에 비해 가장 우수한 인식성능을 나타내어 제안 방법의 유효성을 확인할 수 있었다.

피부색과 Haar-like feature를 이용한 실시간 얼굴검출 (Real-Time face detection using the Skin color and Haar-like feature)

  • 정중교;박상성;장동식
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.113-121
    • /
    • 2005
  • 실시간 영상에서 사람의 얼굴을 검출하는 것은 얼굴 인식 분야에 있어서 주요한 관심 분야 중의 하나이다. 본 본문에서는 실시간 입력되는 영상에서 피부색과 Haar-like feature를 이용한 얼굴 검출 알고리즘을 제안하였다. 제안된 알고리즘은 YCbCr 색 공간에서의 차 연산 기법을 이용하여 이동 물체의 움직임 영역을 ROI(region of interest)로 선정하고 Haar-like feature를 이용하여 얼굴 후보영역을 선정한 다음 피부색 정보를 이용하여 얼굴을 검출하였다. 특히, 가변적으로 선정되는 ROI 영역에 대하여 피부색 정보와 특징 정보를 이용함으로서 실시간 영상에 대하여 처리 속도의 향상과 비슷한 특징 또는 색상을 가진 영상이 얼굴로 검출되는 오류를 방지하였다. 실험 결과는 기존의 연구에 비해 30%의 처리 속도 향상과 96.8%의 검출 성공률을 보였다.

  • PDF