자연이미지에 포함된 텍스트는 많은 중요한 정보를 포함하고 있다. 그러므로 자연이미지에서 텍스트를 추출할 수 있다면 다양한 분야에서 활용될 수 있다. 본 논문에서는 문자-에지 맵 패턴 히스토그램 분석함으로서 텍스트 영역을 추출하는 방법을 제안한다. 캐니-에지 검출기로 에지를 추출하여 16가지 에지 맵을 생성하고, 에지 맵을 조합하여 문자 특징을 갖는 8가지 문자-에지 맵을 생성한다. 8가지 문자-에지 맵과 16가지 에지 맵을 이용하여 텍스트 후보 영역을 추출하고, 문자-에지 맵의 패턴 히스토그램 및 텍스트 영역의 구조적 특징을 이용하여 텍스트 후보 영역에 대한 검증을 수행하였다. 제안한 방법은 다양한 종류의 자연이미지를 대상으로 실험하였고, 복잡한 배경, 다양한 글꼴, 다양한 텍스트 컬러로 구성된 자연이미지에서 텍스트 영역을 효과적으로 추출하였다.
본 논문은 고장 분류 시스템을 위해 진동 신호로부터 특징 벡터를 자동적으로 추출하는 효과적인 기법을 제안한다. 기존의 멜-주파수 캡스트럼 계수는 진동신호의 노이즈에 민감하여 분류 정확도를 감소시키는 단점이 있다. 이러한 문제를 해결하기 위해 본 논문은 4단계 필터 뱅크로 구성된 스펙트럴 엔벨로프 캡스트럼 계수 분석을 제안하며, 4단계는 (1) 모든 진동 신호의 스펙트럴 엔벨로프를 기술하기 위한 선형 예측 코딩 알고리즘 사용 단계, (2) 일반적인 스펙트럴 모양을 얻기 위해 모든 엔벨로프의 평균화 단계, (3) 평균 엔벨로프와 그 주파수의 최대값을 찾기 위한 기울기 하강 방법 사용 단계, (4) 엔벨로프의 주파수 사이의 거리로부터 계산된 중앙값을 얻는데 사용되는 비 중첩 필터 뱅크 단계로 구성된다. 이4-단계필터뱅크는 특징벡터를 추출하기위해 캡스트럼 계수 계산에 사용된다. 마지막으로 유도전동기의 결함 형태를 구분하기 위해 이러한 특수 파라미터를 사용하는 다중 계층 서포트 벡터 머신을 사용한다. 모의실험 결과, 제안하는 방법은 약 99.65%의 분류 성능을 보이며, 동시에 기존 방법들보다 우수한 성능을 보인다.
앱(App)이라 불리는 응용프로그램은 모바일 기기 등에 다운받아 사용 가능하다. 그 중 안드로이드(Android) 기반 앱은 오픈소스 기반으로 구현되어 누구나 악용 가능하다는 단점이 있지만, 아주 일부분의 소스코드를 공개하는 iOS와는 달리 안드로이드는 오픈소스로 구현되어있기 때문에 코드를 분석할 수 있다는 장점도 있다. 하지만, 오픈소스 기반의 안드로이드 앱은 누구나 소스코드 변경에 참여 가능하기 때문에 그만큼 악성코드가 많아지고 종류 또한 다양해질 수밖에 없다. 단기간에 기하급수적으로 늘어나는 악성코드는 사람이 일일이 탐지하기 어려워 AI를 활용하여 악성코드를 탐지하는 기법을 사용하는 것이 효율적이다. 기존 대부분의 악성 앱 탐지 방안은 Feature를 추출하여 악성 앱을 탐지하는 방안이 대부분이다. 따라서 Feature 추출 후 학습에 사용할 최적의 Feature를 선정(Selection)하는 3가지 방안을 제안한다. 마지막으로, 최적의 Feature로 모델링을 하는 단계에서 단일 모델 이외에도 앙상블 기법을 사용한다. 앙상블 기법은 이미 여러 연구에서 나와 있듯이 단일 모델의 성능을 뛰어넘는 결과를 보여주고 있다. 따라서 본 논문에서는 안드로이드 앱(App) 기반 악성코드 탐지 최적의 Feature 선정과 학습모델을 구현하는 방안을 제시한다.
본 논문에서는 단면이 원이 3차원 물체의 특징 추출 방법을 제안하고자 한다. 고 기능의 물체 인식 시스팀을 구현하기 위해서는 2차원 영상과 3차원 영상의 정보를 효과적으로 추출, 취합하는 시스팀을 구축하여야만 한다. 이를 위해 2차원 영상과 3차원 영상의 정보를 추출하는 방법을 다루며 이를 단면이 원인 물체를 중심으로 제안하고자 한다. 단면이 원인 물체의 특징 정보로는 모양 정보와 기하학적 정보가 이용된다. 이를 위해 모양 정보는 Z축기울기를 제안하여 이의 특성을 파악하여 모양 정보를 추출하였으며, 기하학적 정보는 표면에서 법선 벡터들의 교점 특성을 이용하여 추출하였다. 또한 보다 세밀할 인식을 위해 표면 영역들간의 특징값을 추출하는 방 법을 제안하며 최종적인 인식 효율을 위해 기능 정보를 추출하는 방법도 다루었다. 끝으로 본 논문의 유용성을 실험에 의해 입증하고자 한다.
영상신호의 수직축 및 수평축 화소 성분 분석을 통해서, 영상 내부에 존재하는 각 영역의 군집적 특성을 통계 및 영역적으로 처리 분류함으로써 필요한 특징을 추출할 수 있는 새로운 형태의 영역분할처리 알고리즘을 제시한다. 종래의 점처리나 면처리 방식에 비해 이 방식은 수평축과 수직축 상에서의 연속적인 선처리 방식이라고 할 수 있다. 영상을 구성하는 영역간 경계가 암시적으로 구분되어 있으나, 명시적으로는 불투명하고, 영상 특성의 분기점 또한 불명확하고 중복되어 있음으로 인하여 문턱치처리나 분기점처리로 그 영역간 특정을 분할, 추출하기가 곤란한 경우에 이 방식은 우수한 효과가 있다. 수평축 및 수직축 선처리를 통해 각 영역들의 특성들을 군집으로 처리한 다음 처리한 축과 수직 방향으로 축차적 적응진행처리한다. 그 결과 영상 내 각 영역은 화소값의 중복에도 불구하고 하나의 군집으로 자리매김하면서 군집 고유의 화소 값을 갖는다. 그리고 처리후 영상은 각 군집에 부여한 새로운 화소값으로 변환함으로 필요한 특정이 추출된다. 이 방식은 특히 영역 분할을 통해 시각적 효과를 극대화시킬 필요가 있는 경동맥 초음파 의료영상에서 우수한 결과를 보였다.
SIFT(Scale Invariant Feature Transform) 알고리즘은 영상 데이터로부터 객체의 꼭지점이나 모서리와 같이 색상 성분의 차가 심한 영역에서 특징점을 찾아 벡터성분을 추출하는 알고리즘으로, 현재 얼굴인식, 3차원 객체 인식, 파노라마, 3차원 영상 복원 작업의 핵심 알고리즘으로 연구 되고 있다. 본 논문에서는 SIFT 알고리즘을 임베디드 환경에서 실시간으로 처리하기 위해 가장 연산량이 많은 특징점 위치 결정 단계를 Verilog HDL 언어를 이용하여 FPGA로 구현하고 그 성능을 분석한다. 하드웨어는 100MHz 클럭에서 $1,280{\times}960$영상기준 25ms, $640{\times}480$영상기준 5ms의 빠른 연산속도를 보인다. 그리고 Xilinx Virtex4 XC4VLS60 FPGA를 타겟으로 Synplify Pro 8.1i합성툴을 이용하여 합성시 약 45,792LUT(85%)의 결과를 나타낸다.
SURF는 영상의 특징점을 추출하고 서술자를 생성하는 알고리즘으로 객체인식 및 추적, 파노라마 이미지 생성 등 여러 영상처리 시스템에 응용되고 있다. SURF 알고리즘은 영상의 크기, 회전, 시점 등의 변화에 강인한 특징을 갖지만 복잡하고 반복적인 연산이 많아 실시간 처리가 어렵다. 실제 PC(Pentium, 3.3GHz) 환경에서 1000개 정도의 특징점이 추출되는 VGA($640{\times}480$) 해상도의 영상을 이용하여 실험한 결과 특징점 추출 및 서술자 생성에 총 240ms 이상이 걸려 약 4frame/sec로 실시간 처리가 불가능한 것을 확인하였다. 본 논문에서는 SURF 알고리즘의 메모리 접근 패턴을 분석하여 라인 메모리를 효율적으로 구성해 메모리 사용을 최소화하고 반복적으로 수행되는 연산을 병렬처리 하는 방법으로 하드웨어를 설계하였다. 하드웨어 설계 검증 결과 Xilinx사의 Virtex5LX330 FPGA를 타겟으로 합성 시 101,348LUTs(66%)와 1,367KB의 내부 메모리를 사용하고, 100MHz 동작 클록에서 30 frame/sec로 실시간 처리가 가능함을 볼 수 있었다.
As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. For effective fault diagnosis, this paper used MLP(multi-layer perceptron) network which is widely used in pattern classification. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes the decision method of the proper feature vectors about each fault signal for neural-network-based fault diagnosis system. We applied LPC coefficients, maximum magnitudes of each spectral section in FFT and RMS(root mean square) and variance of wavelet coefficients as feature vectors and selected appropriate feature vectors as comparing error ratios of fault diagnosis for sound, vibration and current fault signals. From experiment results, LPC coefficients and maximum magnitudes of each spectral section showed 100 % diagnosis ratios for each fault and the method using wavelet coefficients had noise-robust characteristic.
본 논문에서는 기존의 CLSFN (Cepstral distance and Log-energy based Silence Feature Normalization) 방법의 인식성능을 향상시키기 위하여, 필터 뱅크 서브 밴드 영역에서 잡음을 차감하는 방법과 CLSFN을 결합하는 방법, 즉 FSFN (Filter bank sub-band energy subtraction based CLSFN)을 제안하였다. 이 방법은 음성으로부터 특징 파라미터를 추출할 때 필터 뱅크 서브 밴드 영역에서 잡음을 제거하여 켑스트럼 특징을 향상시키고, 이에 대한 켑스트럼 거리를 이용하여 음성/묵음 분류의 정확도를 개선함으로써 기존 CLSFN 방법에 비해 향상된 인식성능을 얻을 수 있다. Aurora 2.0 DB를 이용한 실험결과, 제안하는 FSFN 방법은 CLSFN 방법에 비해 평균 단어 정확도 (word accuracy)가 약 2% 향상되었으며, CMVN (Cepstral Mean and Variance Normalization)과의 결합에서도 기존 모든 방법에 비해 가장 우수한 인식성능을 나타내어 제안 방법의 유효성을 확인할 수 있었다.
실시간 영상에서 사람의 얼굴을 검출하는 것은 얼굴 인식 분야에 있어서 주요한 관심 분야 중의 하나이다. 본 본문에서는 실시간 입력되는 영상에서 피부색과 Haar-like feature를 이용한 얼굴 검출 알고리즘을 제안하였다. 제안된 알고리즘은 YCbCr 색 공간에서의 차 연산 기법을 이용하여 이동 물체의 움직임 영역을 ROI(region of interest)로 선정하고 Haar-like feature를 이용하여 얼굴 후보영역을 선정한 다음 피부색 정보를 이용하여 얼굴을 검출하였다. 특히, 가변적으로 선정되는 ROI 영역에 대하여 피부색 정보와 특징 정보를 이용함으로서 실시간 영상에 대하여 처리 속도의 향상과 비슷한 특징 또는 색상을 가진 영상이 얼굴로 검출되는 오류를 방지하였다. 실험 결과는 기존의 연구에 비해 30%의 처리 속도 향상과 96.8%의 검출 성공률을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.