• 제목/요약/키워드: feature decomposition

검색결과 183건 처리시간 0.019초

계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 1 - 볼록입체 분할방식 및 특징형상 분할방식 이용 (Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 1 - Using Convex Decomposition and Form Feature Decomposition)

  • 김용세;강병구;정용희
    • 한국CDE학회논문집
    • /
    • 제9권1호
    • /
    • pp.44-50
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the first one of the two companion papers, describes the similarity assessment methods using convex decomposition and FFD.

계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 2 - 절삭가공 특징형상 분할방식 이용 (Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 2 - Using Negative Feature Decomposition)

  • 김용세;강병구;정용희
    • 한국CDE학회논문집
    • /
    • 제9권1호
    • /
    • pp.51-61
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes.. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the second one of the two companion papers, describes the similarity assessment method using NFD.

기준 특징형상에 기반한 셀 분해 및 특징형상 인식에 관한 연구 (Reference Feature Based Cell Decomposition and Form Feature Recognition)

  • 김재현;박정환
    • 한국CDE학회논문집
    • /
    • 제12권4호
    • /
    • pp.245-254
    • /
    • 2007
  • This research proposed feature extraction algorithms as an input of STEP Ap214 data, and feature parameterization process to simplify further design change and maintenance. The procedure starts with suppression of blend faces of an input solid model to generate its simplified model, where both constant and variable-radius blends are considered. Most existing cell decomposition algorithms utilize concave edges, and they usually require complex procedures and computing time in recomposing the cells. The proposed algorithm using reference features, however, was found to be more efficient through testing with a few sample cases. In addition, the algorithm is able to recognize depression features, which is another strong point compared to the existing cell decomposition approaches. The proposed algorithm was implemented on a commercial CAD system and tested with selected industrial product models, along with parameterization of recognized features for further design change.

선택적 볼륨분해를 이용한 정적 CAD 모델의 함몰특징형상 수정 (Editing Depression Features in Static CAD Models Using Selective Volume Decomposition)

  • 우윤환;강상욱
    • 한국CDE학회논문집
    • /
    • 제16권3호
    • /
    • pp.178-186
    • /
    • 2011
  • Static CAD models are the CAD models that do not have feature information and modeling history. These static models are generated by translating CAD models in a specific CAD system into neutral formats such as STEP and IGES. When a CAD model is translated into a neutral format, its precious feature information such as feature parameters and modeling history is lost. Once the feature information is lost, the advantage of feature based modeling is not valid any longer, and modification for the model is purely dependent on geometric and topological manipulations. However, the capabilities of the existing methods to modify static CAD models are limited, Direct modification methods such as tweaking can only handle the modifications that do not involve topological changes. There was also an approach to modify static CAD model by using volume decomposition. However, this approach was also limited to modifications of protrusion features. To address this problem, we extend the volume decomposition approach to handle not only protrusion features but also depression features in a static CAD model. This method first generates the model that contains the volume of depression feature using the bounding box of a static CAD model. The difference between the model and the bounding box is selectively decomposed into so called the feature volume and the base volume. A modification of depression feature is achieved by manipulating the feature volume of the static CAD model.

최대볼륨을 활용한 비교차 볼륨분해 (Non-overlapping Volume Decomposition Using Maximum Volumes)

  • 김병철;문두환
    • 한국CDE학회논문집
    • /
    • 제19권1호
    • /
    • pp.50-60
    • /
    • 2014
  • In this paper, we propose a non-overlapping volume decomposition method that decomposes a solid model into non-overlapped volumes. The non-overlapping volume decomposition finds non-overlapped volumes from maximum volumes. After introducing the concept of the non-overlapping volume decomposition, we discuss technical issues and solutions for them. The non-overlapping volume decomposition is verified by the experiments with a prototype system. From the experiments, it was found that the non-overlapping volume decomposition shows better result than maximum volume decomposition from the view point of design feature recognition.

특이값분해 기반 동적의료영상 재구성기법의 특징 파악을 위한 시뮬레이션 연구 (Simulation Study for Feature Identification of Dynamic Medical Image Reconstruction Technique Based on Singular Value Decomposition)

  • 김도휘;정영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권2호
    • /
    • pp.119-130
    • /
    • 2019
  • Positron emission tomography (PET) is widely used imaging modality for effective and accurate functional testing and medical diagnosis using radioactive isotopes. However, PET has difficulties in acquiring images with high image quality due to constraints such as the amount of radioactive isotopes injected into the patient, the detection time, the characteristics of the detector, and the patient's motion. In order to overcome this problem, we have succeeded to improve the image quality by using the dynamic image reconstruction method based on singular value decomposition. However, there is still some question about the characteristics of the proposed technique. In this study, the characteristics of reconstruction method based on singular value decomposition was estimated over computational simulation. As a result, we confirmed that the singular value decomposition based reconstruction technique distinguishes the images well when the signal - to - noise ratio of the input image is more than 20 decibels and the feature vector angle is more than 60 degrees. In addition, the proposed methode to estimate the characteristics of reconstruction technique can be applied to other spatio-temporal feature based dynamic image reconstruction techniques. The deduced conclusion of this study can be useful guideline to apply medical image into SVD based dynamic image reconstruction technique to improve the accuracy of medical diagnosis.

음악 장르 분류를 위한 부밴드 분해와 특징 차수 축소에 관한 연구 (An investigation of subband decomposition and feature-dimension reduction for musical genre classification)

  • 서진수;김정현;박지현
    • 한국음향학회지
    • /
    • 제36권2호
    • /
    • pp.144-150
    • /
    • 2017
  • 음악 장르는 음악 검색 및 분류 등의 정보 처리 시스템 구현에 있어서 필수적인 요소이다. 일반적으로 장르 분류를 위한 스펙트럼 특징은 음악의 화음 및 강약 구조를 표현하기 위해 부밴드로 분해하여 구해진다. 본 논문은 음악 장르 분류 성능 개선을 위한 특징 추출을 위한 부밴드 분해 방법에 관해 연구하였다. 또한 부밴드 음악 특징의 차수를 줄일 수 있는 방법에 대해서도 연구하였다. 널리 사용되고 있는 장르 데이터셋들에서 실험을 수행하여 널리 사용되고 있는 옥타브 스케일보다 세분화된 부밴드 분해가 장르 분류 성능을 향상시킬 수 있으며, 특징 차수 축소를 결합하여 분류기의 계산량도 줄일 수 있음을 보였다.

설계 특징형상 인식을 고려한 단계적 볼륨 분해 (Stepwise Volume Decomposition Considering Design Feature Recognition)

  • 김병철;김익준;한순흥;문두환
    • 한국CDE학회논문집
    • /
    • 제18권1호
    • /
    • pp.71-82
    • /
    • 2013
  • To modify product design easily, modern CAD systems adopt the feature-based model as their primary representation. On the other hand, the boundary representation (B-rep) model is used as their secondary representation. IGES and STEP AP203 edition 1 are the representative standard formats for the exchange of CAD files. Unfortunately, both of them only support the B-rep model. As a result, feature data are lost during the CAD file exchange based on these standards. Loss of feature data causes the difficulty of CAD model modification and prevents the transfer of design intent. To resolve this problem, a tool for recognizing design features from a B-rep model and then reconstructing a feature-based model with the recognized features should be developed. As the first part of this research, this paper presents a method for decomposing a B-rep model into simple volumes suitable for design feature recognition. The results of experiments with a prototype system are analyzed. From the analysis, future research issues are suggested.

얼굴 검출을 위한 Gabor 특징 기반의 웨이블릿 분해 방법 (Gabor-Features Based Wavelet Decomposition Method for Face Detection)

  • 이정문;최찬석
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.143-148
    • /
    • 2008
  • A real-time face detection is to find human faces robustly under the cluttered background free from the effect of occlusion by other objects or various lightening conditions. We propose a face detection system for real-time applications using wavelet decomposition method based on Gabor features. Firstly, skin candidate regions are extracted from the given image by skin color filtering and projection method. Then Gabor-feature based template matching is performed to choose face cadidate from the skin candidate regions. The chosen face candidate region is transformed into 2-level wavelet decomposition images, from which feature vectors are extracted for classification. Based on the extracted feature vectors, the face candidate region is finally classified into either face or nonface class by the Levenberg-Marguardt back-propagation neural network.

  • PDF

단계적 볼륨분해에 기반한 경계표현 모델의 단순화 (Simplification of Boundary Representation Models Based on Stepwise Volume Decomposition)

  • 김병철;문두환
    • 대한기계학회논문집A
    • /
    • 제37권10호
    • /
    • pp.1305-1313
    • /
    • 2013
  • 본 논문에서는 경계표현 모델에 특징형상기반 단순화를 적용하는 방법을 제안한다. 특징형상기반 단순화를 위해, 경계표현 모델로부터 볼륨분해 트리가 생성된다. 볼륨분해 트리는 가산적 볼륨, 감산적 볼륨 및 필렛/라운드/모따기 볼륨들의 정규화된 불리언 연산으로 표현되며, 필렛/라운드/모따기 분해, 랩어라운드 분해, 볼륨분할 분해 및 셀 기반 분해로 구성된 단계적 볼륨분해를 이용해 생성된다. 볼륨분해 트리는 중위연산 형태로 변환되고, 볼륨들의 순서를 변경하여 CAD 모델을 단순화시킨다. 제안한 방법의 검증을 위해, 프로토타입 시스템을 구현했고, 테스트 케이스에 대한 CAD 모델 단순화 실험을 수행하였다. 실험을 통해 제안한 방법이 경계표현 기반 CAD 모델의 단순화에 유용함을 확인하였다.