• Title/Summary/Keyword: fault tolerant system

Search Result 422, Processing Time 0.024 seconds

Fault Tolerant Control for Nonlinear Boiler System (비선형 보일러 시스템에서의 이상허용제어)

  • Yoon, Seok-Min;Kim, Dae-Woo;Lee, Myung-Eui;Kwon, O-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.254-260
    • /
    • 2000
  • This paper deals with the development of fault tolerant control for a nonlinear boiler system with noise and disturbance. The MCMBPC(Multivariable Constrained Model Based Predictive Control) is adopted for the control of the specific boiler turbin model. The fault detection and diagnosis are accomplished with the Kalman filter and two bias estimators. Once a fault is detected, two Bias estimators are driven to estimate the fault and to discriminate Process fault and sensor fault. In this paper, a fault tolerant control scheme combining MCMBPC with a fault compensation method based on the bias estimator is proposed. The proposed scheme has been applied to the nonlinear boiler system and shown a satisfactory performance through some simulations.

  • PDF

Fault Tolerant Control of Sensor Fault of EPB System (EPB 시스템의 센서 고장 허용 제어 기법)

  • Lee, Won-Goo;Lee, Young-Ok;Jang, Min-Seok;Lee, Choong-Woo;Chung, Chung-Choo;Chung, Han-Byul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.8-17
    • /
    • 2010
  • In this paper, a fault tolerant control against sensor faults of electric parking brake (EPB) is proposed. Fault tolerant control method of EPB system is strongly demanded since sensor faults can endanger a driver's safety. In this paper, a clamp force estimation method is presented using motor's armature current and angular velocity. Clamp force estimation method is applied for fault detection method with parity equations. The goal of the detection method is to detect and identify faults in encoder, current sensor, force sensor, and parking cable. And a switching logic for fault tolerant control against the three sensor faults is suggested. Experimental results show that the proposed force estimation method satisfies the specifications of EPB system. The effectiveness of the fault detection method is validated with experimental results. Although a single sensor fault happens, EPB system with the proposed fault detection method does not develop into a failure on subsystem or system level.

The implementation of control system for enhancing the reliability of the cooling system of pool storage (저장조냉각계통의 신뢰성향상을 위한 제어시스템 구현)

  • 이철용;변기호;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.367-371
    • /
    • 1990
  • In this paper, a real-time fault tolerant control system has been designed for the cooling system of the spent fuel pool storage. The fault tolerant control system consists of the fault detection part, the redundant actuator part(main and backup pumps) and the controller implemented on programmable. logic controller. This paper considers only the actuator fault whose detection is accomplished using Friedland's separated bias estimation method. This paper also shows the real-time experimental results from which it can be concluded that the designed fault tolerant control system exhibits satisfactory performance.

  • PDF

OPRoS based Fault Tolerance Support for Reliability of Service Robots (서비스로봇의 신뢰성 향상을 위한 OPRoS 기반 Fault-tolerance 기법)

  • Ahn, Hee-June;Lee, Dong-Su;Ahn, Sang-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.601-607
    • /
    • 2010
  • For commercial success of emerging service robots, the fault tolerant technology for system reliability and human safety is crucial. Traditionally fault tolerance methods have been implemented in application level. However, from our studies on the common design patterns in fault tolerance, we argue that a framework-based approach provides many benefits in providing reliability for system development. To demonstrate the benefits, we build a framework-based fault tolerant engine for OPRoS (Open Platform for Robotic Services) standards. The fault manager in framework provides a set of fault tolerant measures of detection, isolation, and recovery. The system integrators choose the appropriate fault handling tools by declaring XML configuration descriptors, considering the constraints of components and operating environment. By building a fault tolerant navigation application from the non-faulttolerant components, we demonstrate the usability and benefits of the proposed framework-based approach.

Design and Cost Analysis for a Fault-Tolerant Distributed Shared Memory System

  • Jazi, AL-Harbi Fahad;kim, Kangseok;Kim, Jai-Hoon
    • Journal of Internet Computing and Services
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • Algorithms implementing distributed shared memory (DSM) were developed for ensuring consistency. The performance of DSM algorithms is dependent on system and usage parameters. However, ensuring these algorithms to tolerate faults is a problem that needs to be researched. In this study, we proposed fault-tolerant scheme for DSM system and analyzed reliability and fault-tolerant overhead. Using our analysis, we can choose a proper algorithm for DSM on error prone environment.

Robust Fault-Tolerant Control for a Robot System Anticipating Joint Failures in the Presence of Uncertainties (불확실성의 존재에서 관절 고장을 가지는 로봇 시스템에 대한 강인한 내고장 제어)

  • 신진호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.755-767
    • /
    • 2003
  • This paper proposes a robust fault-tolerant control framework for robot manipulators to maintain the required performance and achieve task completion in the presence of both partial joint failures and complete joint failures and uncertainties. In the case of a complete joint failure or free-swinging joint failure causing the complete loss of torque on a joint, a fully-actuated robot manipulator can be viewed as an underactuated robot manipulator. To detect and identify a complete actuator failure, an on-line fault detection operation is also presented. The proposed fault-tolerant control system contains a robust adaptive controller overcoming partial joint failures based on robust adaptive control methodology, an on-line fault detector detecting and identifying complete joint failures, and a robust adaptive controller overcoming partial and complete joint failures, and so eventually it can face and overcome joint failures and uncertainties. Numerical simulations are conducted to validate the proposed robust fault-tolerant control scheme.

Fault Tolerant System for Open Switch Fault of BLDC Motor Drive (BLDC 전동기 드라이브의 개방된 스위치 고장에 대한 고장 허용 시스템)

  • Park, Byoung-Gun;Kim, Tae-Sung;Ryu, Ji-Su;Lee, Byoung-Kuk;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.164-171
    • /
    • 2006
  • In this paper, the fault tolerant system for BLDC motor has been proposed to maintain control performance under an open switch fault of inverter. The fault identification is proposed to two methods, which are using the difference between reference and actual current, and adding voltage sensors across lower legs of inverter. The reconfiguration scheme is achieved by the four-switch topology connecting a faulty leg to the middle point of DC-link using bidirectional switches. The proposed fault tolerant system quickly recovers control performance by short fault detecting time and reconfiguration of system topology. Therefore, continuous free operation of the BLDC motor drive system after faults is available. The superior performance of the proposed fault tolerant system is proved by simulation.

Development of Fuzzy Hybrid Redundancy for Sensor Fault-Tolerant of X-By-Wire System (X-By-Wire 시스템의 센서 결함 허용을 위한 Fuzzy Hybrid Redundancy 개발)

  • Kim, Man-Ho;Son, Byeong-Jeom;Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.337-345
    • /
    • 2009
  • The dependence of numerous systems on electronic devices is causing rapidly increasing concern over fault tolerance because of safety issues of safety critical system. As an example, a vehicle with electronics-controlled system such as x-by-wire systems, which are replacing rigid mechanical components with dynamically configurable electronic elements, should be fault¬tolerant because a devastating failure could arise without warning. Fault-tolerant systems have been studied in detail, mainly in the field of aeronautics. As an alternative to solve these problems, this paper presents the fuzzy hybrid redundancy system that can remove most erroneous faults with fuzzy fault detection algorithm. In addition, several numerical simulation results are given where the fuzzy hybrid redundancy outperforms with general voting method.

Fault Tolerant Control Design Using IMM Filter with an Application to a Flight Control System (IMM 필터를 이용한 고장허용 제어기법 및 비행 제어시스템에의 응용)

  • 김주호;황태현;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.87-87
    • /
    • 2000
  • In this paper, an integrated design of fault detection, diagnosis and reconfigurable control tot multi-input and multi-output system is proposed. It is based on the interacting multiple model estimation algorithm, which is one of the most cost-effective adaptive estimation techniques for systems involving structural and/or parametric changes. This research focuses on the method to recover the performance of a system with failed actuators by switching plant models and controllers appropriately. The proposed scheme is applied to a fault tolerant control design for flight control system.

  • PDF

The Design of a Fault Tolerant Store Management System

  • Lee, Dongho;Park, Hansol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.10
    • /
    • pp.1-5
    • /
    • 2015
  • Based on the dual hardware and software with distributed recovery blocks, the centralized type fault tolerant store management system(SMS) was proposed. As a result of trade off study related to mutiplex hardware system design, dual single board computer(SBC) was adapted. To verify redundancy function of the proposed structure, the prototype SMS and weapon simulator were used. The proposed SMS operated normally without being affected by a primary SBC failure. The switching time from primary SBC to shadow SBC was within 200 ms. The reliability of the proposed SMS was predicted and compared with the non fault tolerant SMS, thereby it was proved that the proposed SMS has a higher reliability than the non fault tolerant system within effective range.