• Title/Summary/Keyword: fault rock

Search Result 293, Processing Time 0.027 seconds

Numerical simulation on mining effect influenced by a normal fault and its induced effect on rock burst

  • Jiang, Jin-Quan;Wang, Pu;Jiang, Li-Shuai;Zheng, Peng-Qiang;Feng, Fan
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • The study of the mining effect influenced by a normal fault has great significance concerning the prediction and prevention of fault rock burst. According to the occurrence condition of a normal fault, the stress evolution of the working face and fault plane, the movement characteristics of overlying strata, and the law of fault slipping when the working face advances from footwall to hanging wall are studied utilizing UDEC numerical simulation. Then the inducing-mechanism of fault rock burst is revealed. Results show that in pre-mining, the in situ stress distribution of two fault walls in the fault-affected zone is notably different. When the working face mines in the footwall, the abutment stress distributes in a "double peak" pattern. The ratio of shear stress to normal stress and the fault slipping have the obvious spatial and temporal characteristics because they vary gradually from the higher layer to the lower one orderly. The variation of roof subsidence is in S-shape which includes slow deformation, violent slipping, deformation induced by the hanging wall strata rotation, and movement stability. The simulation results are verified via several engineering cases of fault rock burst. Moreover, it can provide a reference for prevention and control of rock burst in a fault-affected zone under similar conditions.

Mechanical Properties of Fault Rocks in Korea

  • Seo, Yong-Seok;Yun, Hyun-Seok;Ban, Jae-Doo;Lee, Chung-Ki
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.571-581
    • /
    • 2016
  • To understand the mechanical properties of fault rocks, data from 584 in situ and laboratory tests on fault rocks from 33 tunnels were analyzed. The unit weights of the fault rocks range from 17.3 to $28.2kN/m^3$ and the cohesion and friction angles vary from 5 to 260 kPa and $14.7^{\circ}$ to $44.0^{\circ}$, respectively. The modulus of deformation and elasticity were generally < 200 MPa. In most cases, the uniaxial compressive strength was < 0.5 MPa, and Poisson's ratios were mainly 0.20-0.35. The mechanical properties of individual rock types were analyzed using box plots, revealing that the cohesion values and friction angles of shale and phyllite have relatively wide inter-quartile ranges and that the modulus of deformation and elasticity of shale have the lowest values of all rock types. In the analysis of mechanical properties by components of fault rocks, the largest values were shown in damage zones of individual rock types.

A Study on Analysis for the Characteristics of Fault Zone at Mica-schist for Reinforcement of Large-Span Tunnel (대단면 터널 보강을 위한 운모편암 단층대 특성 분석에 관한 연구)

  • Chung, Hoi-Yong;Kim, Young-Geun;Park, Yeon-Jun;You, Kwang-Ho
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.132-145
    • /
    • 2009
  • Faults in rock mass have strong influences on the behaviors of rock structure such as rock slope, tunnel and underground space. Thus, it is very important to analyse for the characteristics of fault rocks in design for tunnel. But, due to the limitation of geotechnical investigation in design stages, tunnel engineers have to carry out the face mapping and additional geological survey during tunnel excavation to find the distribution of faults and the engineering properties of faults for support and reinforcement design of tunnel. In this study, various geological survey and field tests were carried out to analyse the characteristics of the large thrust fault zone through the large sectional tunnel is constructed in mica-schist region. Also, the distribution of structural geology, the shape of thrust faults and the mechanical properties of fault rock were studied for the reasonable design of the reinforcement and support method for the highly fractured fault zone in the large-span tunnel.

Experimental research on the evolution characteristics of displacement and stress in the formation of reverse faults

  • Chen, Shao J.;Xia, Zhi G.;Yin, Da W.;Du, Zhao W.
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.127-137
    • /
    • 2020
  • To study the reverse fault formation process and the stress evolution feature, a simulation test system of reverse fault formation is developed based on the analysis of reverse fault formation mechanism. The system mainly consists of simulation laboratory module, operation console and horizontal loading control system, and data monitoring system. It can represent the fault formation process, induce fault crack initiation and simulate faults of different throws. Simulation tests on reverse fault formation process are conducted by using the simulation test system: horizontal loading is added to one side of the model. the bottom rock layer cracks under the effect of the induction device. The crack dip angle is about 29°. A reverse fault is formed with the expansion of the crack dip angle towards the upper right along the fracture surface and the slippage of the hanging wall over the foot wall. Its formation process unfolds five stages: compressive deformation of rock, local crack initiation, reverse fault penetration, slippage of the hanging wall over the foot wall and compaction of fault plane. There is residual structural stress inside rock after fault formation. The study methods and results have guiding and referential significance for further study on reverse fault formation mechanism and rock stress evolution.

Experimental research on the effect of water-rock interaction in filling media of fault structure

  • Faxu, Dong;Zhang, Peng;Sun, Wenbin;Zhou, Shaoliang;Kong, Lingjun
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.471-478
    • /
    • 2021
  • Water damage is one of the five disasters that affect the safety of coal mine production. The erosion of rocks by water is a very important link in the process of water inrush induced by fault activation. Through the observation and experiment of fault filling samples, according to the existing rock classification standards, fault sediments are divided into breccia, dynamic metamorphic schist and mudstone. Similar materials are developed with the characteristics of particle size distribution, cementation strength and water rationality, and then relevant tests and analyses are carried out. The experimental results show that the water-rock interaction mainly reduces the compressive strength, mechanical strength, cohesion and friction Angle of similar materials, and cracks or deformations are easy to occur under uniaxial load, which may be an important process of water inrush induced by fault activation. Mechanical experiment of similar material specimen can not only save time and cost of large scale experiment, but also master the direction and method of the experiment. The research provides a new idea for the failure process of rock structure in fault activation water inrush.

Influence of complex geological structure on horizontal well productivity of coalbed methane

  • Qin, Bing;Shi, Zhan-Shan;Sun, Wei-Ji;Liang, Bing;Hao, Jian-Feng
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.145-154
    • /
    • 2022
  • Complex geological conditions have a great influence on the mining of coalbed methane (CBM), which affects the extraction efficiency of CBM. This investigation analyzed the complicated geological conditions in the Liujia CBM block of Fuxin. A geological model of heterogeneities CBM reservoirs was established to study the influence of strike direction of igneous rocks and fault structures on horizontal well layout. Subsequently, the dual-porosity and dual-permeability mathematical model was established, which considers the dynamic changes of porosity and permeability caused by gas adsorption, desorption, pressure change. The results show that the production curve is in good agreement with the actual by considering gas seepage in matrix pores in the model. Complicated geological structures affect the pressure expansion of horizontal wells, especially, the closer to the fault structure, the more significant the effect, the slower the pressure drop, and the smaller the desorption area. When the wellbore extends to the fault, the pressure expansion is blocked by the fault and the productivity is reduced. In the study area, the optimal distance to the fault is 70 m. When the horizontal wellbore is perpendicular to the direction of coal seam igneous rock, the productivity is higher than that of parallel igneous rock, and the horizontal well bore should be perpendicular to the cleat direction. However, the well length is limited due to the dense distribution of igneous rocks in the Liujia CBM block. Therefore, the horizontal well pumping in the study area should be arranged along the direction of igneous rock and parallel plane cleats. It is found that the larger the area surrounded by igneous rock, the more favorable the productivity. In summary, the reasonable layout of horizontal wells should make full use of the advantages of igneous rock, faults and other complex geological conditions to achieve the goal of high and stable production.

Numerical Analysis of Stress Regimes in and around Inactive and Active Fault Zones (비활성 그리고 활성 단층지역 내부와 주변에서의 응력장에 대한 수치적 분석)

  • Jeong, Woo-Chang;Song, Jai-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.117-125
    • /
    • 2001
  • This paper presented the analysis of stress regimes in and around inactive and active fault zones. The stress regime in the vicinity of an existing inactive fault zone is dependent on the orientation of the fault with respect to the current stress field and the contrast between the elastic properties of the faulted rock and those of the surrounding rock. In the analysis of stress regimes around an active fault zone, if the yielding stress is exceeded during loading, the localized shearing in a fault zone will result in weakness with mean stresses in the fault becoming lower than those in the surrounding rock. It can be expected that such stress gradients will induce fluid flow towards the faults zone.

  • PDF

A Study on the Reinforcement of Rock Faults by Grouting (암석 절리면의 그라우팅에 의한 보강에 관한 연구)

  • Chun, Byung-Sik;Choi, Joong-Keun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.45-51
    • /
    • 2003
  • Grouting materials in rock is grouted as vein type along the fault surface by the other way for soil and allow a change of characteristics in rock faults as a result of that. Therefore the deformation characteristics of rock faults after grouting differ as a direction and characteristic of grouted fault and stress condition of field rock. Thereby it must be analyzed the effect for deformation of rock according to characteristics of rock faults and characteristics of grouting materials to accurately evaluate the reinforced effect by grouting. But grouting method used in field until present depends on experience of workers, and inspection for those effects are evaluated by measurement of elastic wave velocity, permeability tests and etc. in field. In this study, it was investigated that the effects for shear characteristics of maximum shear strength, residual shear strength and etc. by comparison and analysis of test results which were worked by direct shear tests of rock faults with changing a type of grouting materials and the grouting depth(t) for average width(a) of fault surface roughness when OPC(Ordinary Portland Cement) and Micro cement was grouted in fault surface of field rock to evaluate characteristicsof the shear deformation for rock fault surface of dam by grouting.

  • PDF

A Case Study on the Effect of Fault Reactivation on Groundwater Flow around a Hypothetical HLW Repository (Fault Reactivation에 의한 가상 방사성폐기물 처분장 주변 지하수 유동 변화 평가 : 2차원 케이스 스터디)

  • Seo, Eun-Jin;Hwang, Yong-Soo;Han, Ji-Woong
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.307-312
    • /
    • 2006
  • Radionuclide released from corroded container migrates through groundwater flow pathway in the underground rock. Therefore it is important to study the groundwater flow analysis for total system performance assessment of a HLW repository. In this study assuming a geological change of underground rock in future, the two dimensional groundwater flow analysis is done by the NAMMU, the assessment code for groundwater flow in porous media. Assuming the hypothetical repository with the reactivation of fault in the vicinity of it, the effect of change in aperture and permeability by reactivation of fault around a repository on groundwater pathway is studied.

A Case Study on Reinforcement Method of Cut Slope Expected Plane Destruction (평면파괴가 예상되는 사면의 보강대책에 관한 사례 연구)

  • Lee, Dong-Yub;Park, Choon-Sik;Kim, Beoung-Girl
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1022-1028
    • /
    • 2008
  • From the result of precise field investigation and stability examination for the rock slope, following results were acquired. 1. The weathering rock itself, existing fault zone and underground water complexly effect cut slope so that plane destruction may appear by fault zone. 2. The reinforcement force was decided by the result of limit equilibrium. 3. For rock cut slope, the Rock Bolt was judged as the most proper method to the cut slope as comparing/analyzing Rock Anchor, Rock Bolt and method after relaxing the slope.

  • PDF