Browse > Article
http://dx.doi.org/10.12989/gae.2020.23.2.127

Experimental research on the evolution characteristics of displacement and stress in the formation of reverse faults  

Chen, Shao J. (State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology)
Xia, Zhi G. (School of Mining and Safety Engineering, Shandong University of Science and Technology)
Yin, Da W. (School of Mining and Safety Engineering, Shandong University of Science and Technology)
Du, Zhao W. (School of Mining and Safety Engineering, Shandong University of Science and Technology)
Publication Information
Geomechanics and Engineering / v.23, no.2, 2020 , pp. 127-137 More about this Journal
Abstract
To study the reverse fault formation process and the stress evolution feature, a simulation test system of reverse fault formation is developed based on the analysis of reverse fault formation mechanism. The system mainly consists of simulation laboratory module, operation console and horizontal loading control system, and data monitoring system. It can represent the fault formation process, induce fault crack initiation and simulate faults of different throws. Simulation tests on reverse fault formation process are conducted by using the simulation test system: horizontal loading is added to one side of the model. the bottom rock layer cracks under the effect of the induction device. The crack dip angle is about 29°. A reverse fault is formed with the expansion of the crack dip angle towards the upper right along the fracture surface and the slippage of the hanging wall over the foot wall. Its formation process unfolds five stages: compressive deformation of rock, local crack initiation, reverse fault penetration, slippage of the hanging wall over the foot wall and compaction of fault plane. There is residual structural stress inside rock after fault formation. The study methods and results have guiding and referential significance for further study on reverse fault formation mechanism and rock stress evolution.
Keywords
reverse fault formation process; simulation test; system development; fault crack initiation; evolution of stress deformation;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Ji, D.X., Li, P., Su, S.R. and Wang, Y.C. (2013), "Development and application of physical model test device showing evolution process of the reverse fault", J. Xi'an Univ. Sci. Technol., 33(2), 190-194.
2 Jiang, J.Q., Wang, P., Jiang, L.S., Zheng, P.Q. and Feng, F. (2018), "Numerical simulation on mining effect influenced by a normal fault and its induced effect on rock burst", Geomech. Eng., 14(4), 337-344. https://doi.org/10.12989/gae.2018.14.4.337.   DOI
3 Jiang, J.Q., Wang, P., Wu, Q.L. and Zhang, P.P. (2015), "Evolution laws and prediction of separated stratum space under overlying high-position magmatic rocks", Chin. J. Geotech. Eng., 37(10), 1769-1778. https://doi.org/10.11779/CJGE201510004.
4 Jiang, L.S., Kong, P., Zhang, P.P., Shu, J.M., Wang, Q.B., Chen, L.J. and Wu, Q.L. (2020), "Dynamic analysis of the rock burst potential of a longwall panel intersecting with a fault", Rock Mech. Rock Eng., 53, 1737-1754. https://doi.org/10.1007/s00603-019-02004-2.   DOI
5 Jonathan, S.C., Evans, J.P. and Forster, C.B. (1996), "Fault zone architecture and permeability structure", Geology, 24(11), 1025-1028. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO.   DOI
6 Lizurek, G., Lukasz, R. and Plesiewicz, B. (2015), "Mining induced seismic event on an inactive fault", Acta Geophysica, 41(1), 176-200. https://doi.org/10.2478/s11600-014-0249-y.
7 Loukidis, D., Bouckovalas, G.D. and Papadimitriou, A.G. (2009), "Analysis of fault rupture propagation through uniform soil cover", Soil Dyn. Earthq. Eng., 29(11-12), 1389-1404. https://doi.org/10.1016/j.soildyn.2009.04.003.   DOI
8 Mcclay, K.R. and Scott, A.D. (1991), "Experimental models of hangingwall deformation in ramp-flat listric extensional fault systems", Tectonophysics, 188(1), 85-96. https://doi.org/10.1016/0040-1951(91)90316-K.   DOI
9 Mcclay, K.R., Whitehouse, P.S., Dooley, T. and Richards, M. (2004), "3D evolution of fold and thrust belts formed by oblique convergence", Mar. Petrol. Geol., 21(7), 857-877. https://doi.org/10.1016/j.marpetgeo.2004.03.009.   DOI
10 Melih, G., Hakan, A., Omer, A. and Gurkan, B. (2018), "Investigation of possible causes of sinkhole incident at the Zonguldak Coal Basin, Turkey", Geomech. Eng., 16(2), 177-185. https://doi.org/10.12989/gae.2018.16.2.177.   DOI
11 Nollet, S., Vennekate, G.J.K., Giese, S., Vrolijk, P., Urai, J.L. and Ziegler, M. (2012), "Localization patterns in sandbox-scale numerical experiments above a normal fault in basement", J. Struct. Geol., 39, 199-209. https://doi.org/10.1016/j.jsg.2012.02.011.   DOI
12 Sainoki, A. and Hani, S.M. (2014), "Dynamic behaviour of mining-induced fault slip", Int. J. Rock Mech. Min. Sci., 66, 19-29. https://doi.org/10.1016/j.ijrmms.2013.12.003.   DOI
13 Shan, J.Z., Li, J.L. and Xiao, W.J. (1999), "Physical model Experiments of dynamic mechanism on continent-continent collision", Earth Sci. Front. China Univ. Geosci., 6(4), 399-401.
14 Sun, Z.Q. and Zhang, J.H. (2004), "Variation of in-situ stresses before and after occurrence of geologic fault structure", Chin. J. Rock Mech. Eng., 23(23), 3964-3969.
15 Tali, N., Lashkaripour, G.R., Moghadas, N.H. and Ghalandarzadeh, A. (2019), "Centrifuge modeling of reverse fault rupture propagation through single-layered and stratified soil", Eng. Geol., 249, 273-289. https://doi.org/10.1016/j.enggeo.2018.12.021.   DOI
16 Wang, C.X., Shen, B.T., Chen, J.T., Tong, W.X., Jiang, Z., Liu, Y. and Li, Y.Y. (2020), "Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation", Geomech. Eng., 20(6),485-495. https://doi.org/10.12989/gae.2020.20.6.485.   DOI
17 Wang, E.Y., Shao, Q., Du, Y.K. and Han, S.L. (2010), "Genesis mechanism and distribution of Structural coal on two sides of reverse fault", Min. Safety Environ. Protect., 37(1), 4-6.   DOI
18 Wang, P., Jiang, L.S., Li X.Y., Qin, G.P. and Wang, E.Y. (2018), "Physical simulation of mining effect caused by a fault tectonic", Arab. J. Geosci., 11(23), 741-751. https://doi.org/10.1007/s12517-018-4088-z.   DOI
19 Wang, H.W., Jiang, Y.D., Sheng, X., Mao, L.T., Lin, Z.N., Deng, D.X. and Zhang, D.Q. (2016), "Influence of fault slip on mining-induced pressure and optimization of roadway support design in fault-influenced zone", J. Rock Mech. Geotech. Eng., 8, 660-671. https://doi.org/10.1016/j.jrmge.2016.03.005.   DOI
20 Wang, H.W., Jiang, Y.D., Yang, T., Zhang, D.Q. and Ning, T.H. (2017), "Study on mining induced stress distribution under faults structure", Coal Eng., 48(1), 92-98.
21 Wu, J.W., Tong, H.S., Tong, S.J. and Tang, D.Q. (2017), "Study on similar material for simulation of mining effect of rock mass at fault zone", Chin. J. Rock Mech. Eng., 26(S2), 4171-4175.
22 Wyrick, D.Y. and Smart, K.J. (2009), "Dike-induced deformation and Martian graben systems", J. Volcanol. Geoth. Res., 185, 1-11. https://doi.org/10.1016/j.jvolgeores.2008.11.022.   DOI
23 Xia, Z.G., Chen, S.J., Liu, X.Z. and Sun, R. (2020), "Strength characteristics and fracture evolution of rock with different shapes inclusions based on particle flow code", Geomech. Eng., 22(5), 461-473. https://doi.org/10.12989/gae.2020.22.5.461.   DOI
24 Xie, R.H., Qu, T.X. and Qian, G.M. (1991), Structural Geology, China University of Mining and Technology Press, Xu Zhou, Jiang Su, China.
25 Yukutakea, Y., Takeda, T. and Yoshida, A. (2015), "The applicability of frictional reactivation theory to active faults in Japan based on slip tendency analysis", Earth Planet. Sci. Lett., 411, 188-198. https://doi.org/10.1016/j.epsl.2014.12.005.   DOI
26 Anastasopoulos, I., Callerio, A., Bransby, M.F., Davies, M.C.R., El Nahas, A., Faccioli, E., Gazetas, G., Masella, A., Paolucci, R., Pecker, A.A. and Rossignol, E. (2008), "Numerical analyses of fault-foundation interaction", Bull. Earthq. Eng., 6(4), 645-675. https://doi.org/10.1007/s10518-008-9078-1.   DOI
27 Zhang, J., Li, S.C., Li, L.P., Zhang, Q.Q., Xu, Z.H., Wu, J. and He, P. (2017) "Grouting effects evaluation of water-rich faults and its engineering application in Qingdao Jiaozhou Bay Subsea Tunnel, China", Geomech. Eng., 12(1), 35-52. https://doi.org/10.12989/gae.2017.12.1.035.   DOI
28 Zhao, J.H., Zhang, X.G., Jiang, N., Yin L.M. and Guo, W.J. (2020), "Porosity zoning characteristics of fault floor under fluid-solid coupling", B. Eng. Geol. Environ., 79(5), 2529-2541. https://doi.org/10.1007/s10064-019-01701-0.   DOI
29 Zhou, J.X. (1999), "Sandbox experimental modeling on the inversion tectonics of Half-Graben", Prog. Geophys., 14(3), 47-52.
30 Ahmadi, M., Moosavi, M. and Jafari, M.K. (2018), "Experimental investigation of reverse fault rupture propagation through cohesive granular soils", Geomech. Energy Environ., 14, 61-65. https://doi.org/10.1016/j.gete.2018.04.004.   DOI
31 Anderson, E.M. (1951), The Dynamics of Faulting, 2nd Edition, Oliver and Boyd, Edinburgh, U.K.
32 Chang, Y.Y., Lee, C.J., Huang, W.C., Huang, W.J., Lin, M.L., Hung, W.Y. and Lin, Y.H. (2013), "Use of centrifuge experiments and discrete element analysis to model the reverse fault slip", Int. J. Civ. Eng., 11(2), 79-89.
33 Chen, J.T., Zhao, J.H., Zhang, S.C., Zhang, Y., Yang, F. and Li, M. (2020), "An experimental and analytical research on the evolution of mining cracks in deep floor rock mass", Pure Appl. Geophys., 1-24. https://doi.org/10.1007/s00024-020-02550-9.   DOI
34 Chen, S.J., Du, Z.W., Zhang, Z., Zhang, H.W., Xia, Z.G. and Feng, F. (2020), "Effects of chloride on the early mechanical properties and microstructure of gangue-cemented paste backfill", Constr. Build. Mater., 235, 117504. https://doi.org/10.1016/j.conbuildmat.2019.117504.   DOI
35 Chen, S.J., Li, Z.Y., Ren, K.Q., Feng, F. and Xia, Z.G. (2020), "Experimental study on development process of reverse fault in coal measures strata and law of stress evolution in hanging wall strata", J. Min. Safety Eng., 37(2), 366-375. https://doi.org/10.13545/j.cnki.jmse.2020.02.017.
36 Chen, S.J., Xia, Z.G., Guo, W.J. and Shen, B.T. (2018), "Research status and Prospect of disaster response of rock mass mining under the influence of fault", Coal Sci. Technol., 46(1), 20-27.
37 Feng, J.W. and Gu, K.K. (2017), "Geomechanical modeling of stress and fracture distribution during contractional fault-related folding", J. Geosci. Environ. Protect., 5(11), 61-93. https://doi.org/10.4236/gep.2017.511006.   DOI
38 Currie, J.B. (1956), "Role of concurrent deposition and deformation of sediments in development of salt-dome graben structures", Aapg Bull., 40, 1-16. https://doi.org/10.1306/5CEAE2F2-16BB-11D7-8645000102C1865D.
39 Donnelly, L.J. (2006), "A review of coal mining induced fault reactivation in Great Britain", Quart. J. Eng. Geol. Hydrogeol., 39(1), 5-50. https://doi.org/10.1144/1470-9236/05-015.   DOI
40 Fan, J.Y., Chen, J., Jiang, D.Y., Wu, J.X., Shu, C. and Liu, W. (2019), "A stress model reflecting the effect of the friction angle on rockbursts in coal mines", Geomech. Eng., 18(1), 21-27. https://doi.org/10.12989/gae.2019.18.1.021.   DOI
41 Hazeghian, M. and Soroush, A. (2015), "DEM simulation of reverse faulting through sands with the aid of GPU computing", Comput. Geotech., 66, 253-263. https://doi.org/10.1016/j.compgeo.2015.01.019.   DOI
42 Gazetas, G., Zarzouras, O., Drosos, V. and Anastasopoulos, I. (2015), "Bridge-pier caisson foundations subjected to normal and thrust faulting: Physical experiments versus numerical analysis", Meccanica, 50(2), 341-354. https://doi.org/10.1007/s11012-014-9997-7.   DOI
43 Ghosh, S.K., Mandal, N., Sengupta, S., Deb, S.K. and Khan, D. (1993), "Superposed buckling in multilayers", J. Struct. Geol., 15(1), 95-111. https://doi.org/10.1016/0191-8141(93)90081-K.   DOI
44 Gray, G.G., Morgan, J.K. and Sanz, P.F. (2014), "Overview of continuum and particle dynamics methods for mechanical modeling of contractional geologic structures", J. Struct. Geol., 59,19-36. https://doi.org/10.1016/j.jsg.2013.11.009.   DOI
45 Hardy, S. and Finch, E. (2006), "Discrete element modelling of the influence of cover strength on basement-involved faultpropagation folding", Tectonophysics, 415(1-4), 225-238. https://doi.org/10.1016/j.tecto.2006.01.002.   DOI
46 Hardy, S. and Finch, E. (2007), "Mechanical stratigraphy and the transition from trishear to kink-band fault-propagation fold forms above blind basement thrust faults: A discrete-element study", Mar. Petrol. Geol., 24(2), 75-90. https://doi.org/10.1016/j.marpetgeo.2006.09.001.   DOI
47 Hazeghian, M. and Soroush, A. (2017), "Numerical modeling of dip-slip faulting through granular soils using DEM", Soil Dyn. Earthq. Eng., 97, 155-171. http://doi.org/10.1016/j.soildyn.2017.03.021.   DOI
48 Islam, M.R. and Shinjo, R. (2009), "Mining-induced fault reactivation associated with the main conveyor belt roadway and safety of the Barapukuria Coal Mine in Bangladesh: Constraints from BEM simulations", Int. J. Coal Geol., 79(4), 115-130. https://doi.org/10.1016/j.coal.2009.06.007.   DOI