• Title/Summary/Keyword: fault diagnosis system

Search Result 834, Processing Time 0.035 seconds

Model-based Fault Diagnosis Using Quantized Vibration Signals (양자화된 진동신호를 이용한 모델기반 고장진단)

  • Kim, Do-Hyun;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.279-284
    • /
    • 2005
  • Knowledge based fault diagnosis has a limitation in determining the cause and scheme for the fault, because it detects faults from signal pattern only Therefore, model-based fault diagnosis is requested to determine the fault by analyzing output of the equipment from its dynamic model. This research shows a method how to devise the automaton of system as a model for normal and faulty condition through the reduction of handling data by quantization of vibration signals and the example which is concerning to the bearing of ATM. The developed model based fault diagnosis was applied to detect the faulty bearing of ATM, which results.

  • PDF

An Experimental Study on the Rule Based Fault Detection and Diagnosis System for a Constant Air Volume Air Handling Unit (룰 베이스를 이용한 정풍량 공조기 고장 검출 및 진단 시스템의 실험적 연구)

  • Han, Do-Young;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.872-880
    • /
    • 2004
  • The fault detection and diagnosis technology may be applied in order to decrease the energy consumption and the maintenance cost of the air-conditioning system. In this study, an air handling unit fault test apparatus was built and fault diagnosis algorithms were applied to diagnose various faults of an air handling unit. Test results showed the good diagnosis for applied faults. Therefore, these algorithms may be effectively used to develope the real time fault detection and diagnosis system for the air handling unit.

A Study on Development of Fault diagnosis system for PLC self-diagnostics and its external devices (PLC 자체 고장진단과 그의 외부 소자의 고장 진단 시스템 개발에 관한 연구)

  • Bur, Yone-Gi;Blen, Zeung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1189-1192
    • /
    • 1996
  • In this paper, a fault diagnosis method is proposed for self-diagnostics of PLC(Programmable Logic Controller), process controller in industrial fields, and diagnosis of its external devices such as sensors and actuators. The aim of this research is proposition of systematic method of fault diagnosis of PLC control system and development of its equipment. A PLC fault diagnosis algorithm consists of self-diagnostics given by PLC makers, Inpuot/Output tracking method by analyzing sequence PLC programs, searching method of past fault cases in database using an expert system, and diagnosis of PLC units such as CPU, DI, and DO board. Finally usability of PLC fault diagnostic system is verified by testing a MELSEC PLC.

  • PDF

Fault Diagnosis System for Traction Motor in Electric Multiple Unit (전동차 견인전동기 고장진단시스템)

  • Park, Hyun-June;Jang, Dong-Uk;Lee, Gil-Hun;Choi, Jong-Sun;Kim, Jung-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.518-521
    • /
    • 2003
  • A new measurement system was developed by fault diagnosis system for traction motor using current signal analysis. The motor current signature analysis method is used for traction motor fault diagnosis. The diagnosis system program is constructed by artificial neural networks algorithm, those results from the program are used to train neural networks. The trained neural networks have the ability to compute adaptive results for non-trained inputs, and to calculate very fast due to original parallel structure of neural networks with high accuracy within destined tolerance. This system suggested that available test for checking, the probable extent of aging, and the rate of which aging is taking place.

  • PDF

Robust process fault diagnosis with uncertain data

  • Lee, Gi-Baek;Mo, Kyung-Joo;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.283-286
    • /
    • 1996
  • This study suggests a new methodology for the fault diagnosis based on the signed digraph in developing the fault diagnosis system of a boiler plant. The suggested methodology uses the new model, fault-effect tree. The SDG has the advantage, which is simple and graphical to represent the causal relationship between process variables, and therefore is easy to understand. However, it cannot handle the broken path cases arisen from data uncertainty as it assumes consistent path. The FET is based on the SDG to utilize the advantages of the SDG, and also covers the above problem. The proposed FET model is constructed by clustering of measured variables, decomposing knowledge base and searching the fault propagation path from the possible faults. The search is performed automatically. The fault diagnosis system for a boiler plant, ENDS was constructed using the expert system shell G2 and the advantages of the presented method were confirmed through case studies.

  • PDF

A Connectionist Expert System for Fault Diagnosis of Power System (전력계통 사고구간 판정을 위한 Commectionist Expert System)

  • 김광호;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.331-338
    • /
    • 1992
  • The application of Connectionist expert system using neural network to fault diagnosis of power system is presented and compared with rule-based expert system. Also, the merits of Connectionist model using neural network is presented. In this paper, the neural network for fault diagnosis is hierarchically composed by 3 neural network classes. The whole power system is divided into subsystems, the neural networks (Class II) which take charge of each subsystem and the neural network (Class III) which connects subsystems are composed. Every section of power system is classified into one of the typical sections which can be applied with same diagnosis rules, as line-section, bus-section, transformer-section. For each typical section, only one neural network (Class I) is composed. As the proposed model has hierarchical structure, the great reduction of learning structure is achieved. With parallel distributed processing, we show the possibility of on-line fault diagnosis.

  • PDF

Implementation of Automated Motor Fault Diagnosis System Using GA-based Fuzzy Model (유전 알고리즘기반 퍼지 모델을 이용한 모터 고장 진단 자동화 시스템의 구현)

  • Park, Tae-Geun;Kwak, Ki-Seok;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.24-26
    • /
    • 2005
  • At present, KS-1000 which is one of a commercial measurement instrument for motor fault diagnosis has been used in industrial field. The measurement system of KS-1000 is composed of three part : harmonic acquisition, signal processing by KS-1000 algorithm, diagnosis for motor fault. First of all, voltage signal taken from harmonic sensor is analysed for frequency by KS-1000 algorithm. Then, based on the result values of analysis skilled expert makes a judgment about whether motor system is the abnormality or degradation state. But the expert system such a motor fault diagnosis is very difficult to bring the expectable results by mathematical modeling due to the complexity of judgment process. In this reason, we propose an automation system using fuzzy model based on genetic algorithm(GA) that builded a qualitative model of a system without priori knowledge about a system provided numerical input output data.

  • PDF

High Precison Bearing Fault Detect System of Inverter Driven System Using Oversampled Current Signals (오버샘플된 전류신호를 사용한 인버터 구동형 전동기의 베어링 고장검출 시스템)

  • Kim, Nam-Hun;Kim, Min-Heui;Choi, Chang-Ho;Lee, Sang-Hoon;Choi, Keyng-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.506-508
    • /
    • 2007
  • In this paper, the induction motor bearing fault diagnosis system using current signals which are measured by over-sampling method is presented. In the case of inverter fed motor drive unlike line-driven motor drive, that make a lot of noise which can cause a wrong fault signals because of PWM(pulse width modulation) voltage. So, the current signals for fault diagnosis need very precise and high resolution information, which means this system demand additional hardware such as low pass filter, high resolution ADC system and so on to use fault diagnosis system. Therefore, the proposed over-sampling method is expected to contribute to low cost fault diagnosis system even though previous inverter fed motor drive without any additional hardware. In order to confirm the presented algorithms, various experiments for bearing faults are tested and the line current spectrum of each faulty situation using park transformation is compared with a FFT results.

  • PDF

A New Study on Vibration Data Acquisition and Intelligent Fault Diagnostic System for Aero-engine

  • Ding, Yongshan;Jiang, Dongxiang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.16-21
    • /
    • 2008
  • Aero-engine, as one kind of rotating machinery with complex structure and high rotating speed, has complicated vibration faults. Therefore, condition monitoring and fault diagnosis system is very important for airplane security. In this paper, a vibration data acquisition and intelligent fault diagnosis system is introduced. First, the vibration data acquisition part is described in detail. This part consists of hardware acquisition modules and software analysis modules which can realize real-time data acquisition and analysis, off-line data analysis, trend analysis, fault simulation and graphical result display. The acquisition vibration data are prepared for the following intelligent fault diagnosis. Secondly, two advanced artificial intelligent(AI) methods, mapping-based and rule-based, are discussed. One is artificial neural network(ANN) which is an ideal tool for aero-engine fault diagnosis and has strong ability to learn complex nonlinear functions. The other is data mining, another AI method, has advantages of discovering knowledge from massive data and automatically extracting diagnostic rules. Thirdly, lots of historical data are used for training the ANN and extracting rules by data mining. Then, real-time data are input into the trained ANN for mapping-based fault diagnosis. At the same time, extracted rules are revised by expert experience and used for rule-based fault diagnosis. From the results of the experiments, the conclusion is obvious that both the two AI methods are effective on aero-engine vibration fault diagnosis, while each of them has its individual quality. The whole system can be developed in local vibration monitoring and real-time fault diagnosis for aero-engine.

  • PDF

The Development of Portable Rotor Bar Fault Diagnosis System for Three Phase Small Induction Motors Using LabVIEW (LaVIEW를 이용한 휴대용 3상 소형유도전동기 회전자 바 고장 진단 시스템 개발)

  • Song, Myung-Hyun;Park, Kyu-Nam;Han, Dong-Gi;Lee, Tae-Hun;Woo, Hyeok-Jae
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.51-55
    • /
    • 2007
  • In this paper, a portable rotor bar fault diagnosis system for small 3 phase induction motors is suggested. For portable real-tine diagnosis system, an USB-DAQ board for collecting the 3 phase current data, three current probes, and a notebook computer are used. The LabVIEW graphical language is used for filtering, analysis, storing, and monitoring the current data. The three phase stator current are filtered and transformed to frequency level by FIT. An analysis window programed by LabVIEW is located in front panel to show the FIT results and this suggested window has a zooming function to detect the fault feature more easily near the feature frequency range which is varying by the slip frequency. To show the possibility of portable rotor bar diagnosis system, three types(healthy, one rotor bar fault, two rotor bar fault) of rotor bar are intentionally prepared and compared by the suggested window of front panel. Experimental results are shown that a suggested diagnosis system is applicable to portable diagnosis system and the rotor bar fault is detected by the frequency window in front panel programed in LabVIEW graphical language.