• Title/Summary/Keyword: fatigue simulation

Search Result 409, Processing Time 0.023 seconds

A Failure Estimation Method of Steel Pipe Elbows under In-plane Cyclic Loading

  • Jeon, Bub-Gyu;Kim, Sung-Wan;Choi, Hyoung-Suk;Park, Dong-Uk;Kim, Nam-Sik
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.245-253
    • /
    • 2017
  • The relative displacement of a piping system installed between isolated and nonisolated structures in a severe earthquake might be larger when without a seismic isolation system. As a result of the relative displacement, the seismic risks of some components in the building could increase. The possibility of an increase in seismic risks is especially high in the crossover piping system in the buildings. Previous studies found that an elbow which could be ruptured by low-cycle ratcheting fatigue is one of the weakest elements. Fatigue curves for elbows were suggested based on component tests. However, it is hard to find a quantitative evaluation of the ultimate state of piping elbows. Generally, the energy dissipation of a solid structure can be calculated from the relation between displacement and force. Therefore, in this study, the ultimate state of the pipe elbow, normally considered as failure of the pipe elbow, is defined as leakage under in-plane cyclic loading tests, and a failure estimation method is proposed using a damage index based on energy dissipation.

A Durability Study through the Fatigue Analysis on the Emblem for Car (차량용 엠블럼에 대한 피로해석을 통한 내구성 연구)

  • Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.4
    • /
    • pp.39-47
    • /
    • 2014
  • This study compares and analyzes the results of structural analyses due to three constraint conditions on the emblem for car. The analysis results are studied by investigating the influence due to the column angle combined between the lower plate of amblem and the upper amblem. The combined with the amblem is parallel to the longitudinal axle of the amblem at the first case. The angle combined with the amblem is perpendicular to the lower plate at the second case. The angle combined with the amblem is perpendicular to the amblem at the third case as the last case. The amblem model for car can be thought to be optimized by investigating the fatigue life and the durability of amblem through the simulation of structural and fatigue analyses. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

Crystal Plasticity Simulation of Ti-6Al-4V Under Fretting Fatigue (프레팅 피로를 받는 Ti-6Al-4V의 결정소성 시뮬레이션)

  • Goh Chung Hyun;Lee Kee Seok;Ko Jun Bin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.511-517
    • /
    • 2005
  • Fretting fatigue is often the root cause of the nucleation of cracks at attachments of structural components. Since fretting fatigue damage accumulation occurs over relatively small volumes, the subsurface cyclic plastic strain is expected to be rather non-uniformly distributed in polycrystalline materials. The scale of the cyclic plasticity and the damage process zones is often on the order of microstructure dimensions. Fretting damage analyses using cyclic crystal plasticity constitutive models have the potential to account for the influence of size, morphology, and crystallographic orientation of grains on fretting damage evolution. Two-dimensional plane strain simulations of fretting fatigue are performed using the cyclic properties of Ti-6Al-4V. The crystal plasticity simulations are compared to an initially isotropic $J_{2}$ theory with nonlinear kinematic hardening as well as to experiments. The influence of initially isotropic versus textured microstructure in the presence of crystallographic slip is studied.

Musculotendon Model to Represent Characteristics of Muscle Fatigue due to Functional Electrical Stimulation (기능적 전기자극에 의한 근육피로의 특성을 표현하는 근육 모델)

  • Lim, Jong-Kwang;Nam, Moon-Hyon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.1046-1053
    • /
    • 1999
  • The musculotendon model is presented to show the declines in muscle force and shortening velocity during muscle fatigue due to the repeated functional electrical stimulation (FES). It consists of the nonlinear activation and contraction dynamics including physiological concepts of muscle fatigue. The activation dynamics represents $Ca^{2+}$ binding and unbinding mechanism with troponins of cross-bridges in sarcoplasm. It has the constant binding rate or activation time constant and two step nonlinear unbinding rate or inactivation time constant. The contraction dynamics is the modified Hill type model to represent muscle force - length and muscle force - velocity relations. A muscle fatigue profile as a function of the intracellular acidification, pH is applied into the contraction dynamics to represent the force decline. The computer simulation shows that muscle force and shortening velocity decline in stimulation time. And we validate the model. The model can predicts the proper muscle force without changing its parameters even when existing the estimation errors of the optimal fiber length. The change in the estimate of the optimal fiber length has an effect only on muscle time constant in transient period not on the tetanic force in the steady-state and relaxation periods.

  • PDF

Control of FES Cycling Considering Muscle Fatigue (근피로를 고려한 FES 싸이클링의 제어)

  • Kim Chul-seung;Hase Kazunori;Kang Gon;Eom Gwang-moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.207-212
    • /
    • 2005
  • The purpose of this work is to develop the FES controller that can cope with the muscle fatigue which is one of the most important problems of current FES (Functional Electrical Stimulation). The feasibility of the proposed FES controller was evaluated by simulation. We used a fitness function to describe the effect of muscle fatigue and recovery process. The FES control system was developed based on the biological neuronal system. Specifically, we used PD (Proportional and Derivative) and GC (Gravity Compensation) control, which was described by the neuronal feedback structure. It was possible to control of multiple joints and muscles by using the phase-based PD and GC control method and the static optimization. As a result, the proposed FES control system could maintain the cycling motion in spite of the muscle fatigue. It is expected that the proposed FES controller will play an important role in the rehabilitation of SCI patient.

The stiffness-degradation law of base metal after fatigue cracking in steel bridge deck

  • Liang Fang;Zhongqiu Fu;Bohai Ji;Xincheng Li
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.239-251
    • /
    • 2023
  • The stiffness evaluation of cracked base metal is of great guidance to fatigue crack reinforcement. By carrying out fatigue tests and numerical simulation of typical cracking details in steel box girder, the strain-degradation law of cracked base metal was analyzed and the relationship between base metal stress and its displacement (stiffness) was explored. The feasibility of evaluating the stress of cracked base metal based on the stress field at the crack tip was verified. The results demonstrate that the stiffness of cracked base metal shows the fast-to-slow degradation trend with fatigue cracking and the base metal at 50mm or more behind the crack tip basically lose its bearing capacity. Drilling will further accelerate stiffness degradation with the increase of hole diameters. The base metal stress has a negative linear relation with its displacement (stiffness), The stress of cracked base metal is also related to stress intensity factor and its relative position (distance, included angle) to the crack tip, through which the local stiffness can be effectively evaluated. Since the stiffness is not uniformly distributed along the cracked base metal, the reinforcement patch is suggested to be designed according to the stiffness to avoid excessive reinforcement for the areas incompletely unloaded.

Experimentally Evaluating Fatigue Behavior of Corroded Steels Exposed in Atmospheric Environments (대기환경하에서 장기간 사용된 부식강재의 실험적 피로거동평가)

  • Mun, Jae Min;Jeong, Young Soo;Jeon, Je Hyeong;Ahn, Jin Hee;Kim, In Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.193-204
    • /
    • 2017
  • Fatigue strength of temporary steels and painted structural steels corroded under outdoor atmospheric environments is not clear. In this study, fatigue tests were carried out on steel plates which were cut off from 7-year-old temporary structural member under subway construction environment and from 75-year-old Yeongdo bridge member under marine atmospheric environment. After removing corrosion production on the steel surface, 3-dimensional surface geometry of the corroded steel was measured at intervals of $1.0{\times}1.0mm$, and corrosion characteristics such as minimum, maximum and mean values of residual thicknesses were calculated. From the fatigue test and FEM analysis results, the relationship between corrosion characteristics and fatigue behavior was presented, and change in fatigue strength of the unpainted and painted steels corroded in outdoor environments was also presented.

Fatigue Phenomenon of Mechanical Properties in Jean Slacks by the after Wearing (진바지의 착용 후 부위별 피로도에 관한 연구)

  • Lee, Chang-Mi;Kim, Tae-Gyu;Gwon, O-Gyeong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.2
    • /
    • pp.257-266
    • /
    • 1998
  • This study was conducted to examine the changes of the mechanical properties of the position in jean slacks during the wear, previously used for the wearing test, which were subjected to repeated tensile-shearing deformation using a simulated fatigue tester has been investigated and compared, by calculating both mechanical properties and hand value(HV) of these fabrics with KES-F system and the by obtaining the THV through these calculated properties. The results are as follows. 1. The fatigue phenomenon of mechanical properties was the LT, 2H B, 2HBS, MMD, SMD, RC values increased, elasticity values of tensile, bending and shearing properties, such as B, G and compression properties LC, WC were reduced. It was shown, then, that those fabrics lost their elasticity and became flexible and soft with the increase of fatigue. 2. The hand value and THV; except anterior knee from all part of KOSHI, NUMERI, FUKURAMI was decreased. 3. The fatigue phenomenon of hand value was different on the position of clothing; on the position of hip, rate of B, G smaller than other parts and KOSHI was decreased, on the part of anterior thigh was FUKURAMI was increased, on the anterior knee RC, NUMERI, THV was increased, on the posterior knee was 2HB, 2HG, 2HGS showed increasedgreater than any other part and on the hem of back, MMD was increased, but NUMERI was decreased. 4. The changing process of mechanical properties in the simulation testing by the fatigue tester has similar tendency to that of the wearing tester. It is concluded that this testing method is useful to predict the fatigue phenomena of fabrics caused by wearing.

  • PDF

A Study on the Fatigue Strength and Life Distribution of Carbon Steel Using the Database System (데이터베이스 시스템을 이용한 탄소강의 피로강도 및 수명분포)

  • Kim, Jung Kyu;Moon, Joon Ho;Kim, Do Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.37-45
    • /
    • 1998
  • The relational database system on fatigue strength was constructed, and the properties of fatigue life distribution were examined to analyze reliability and safety of metallic materials. Data manipulations were efficiently performed in relational fatigue strength database system using dependency diagram. Regardless of the distribution of fatigue strength, the proposed method, the Robust method and the complementary error function method using probability distribution, successfully estimated parameters of the 3-parameter Weibull distribution. The proposed criterion for estimating non-failure probability showed good results regardless of censoring time. The fatigue life distribution function described as a function of parameters of the Weibull distribution and applied stress ratio produced P-S-N characteristics reasonably.

  • PDF