• 제목/요약/키워드: fatigue limit(

검색결과 455건 처리시간 0.028초

LRFD 설계기준(안) 피로설계트럭 모형 분석 (Analysis of Fatigue Truck Model for LRFD Code)

  • 조은영;신동구
    • 한국강구조학회 논문집
    • /
    • 제21권3호
    • /
    • pp.331-342
    • /
    • 2009
  • Miner의 피로손상법칙을 적용하여 피로파괴에 대한 한계상태함수를 표현하고, 실제 국내 통행차량의 통계적 특성을 반영하여 LRFD 설계기준(안)의 피로설계트럭모형과 현 도로교설계기준의 DB-24 하중에 대한 피로파괴 신뢰도해석을 수행하였다. 피로한계상태함수는 Miner의 피로손상법칙을 확률변수의 함수로 나타내고 이들 확률변수에 대하여 국내 통행트럭 등의 실측 통계자료를 분석하여 구한 통계치와 문헌에 보고된 결과를 조사하여 구한 통계치를 적용하여 지간별 및 피로상세별 신뢰도지수를 Rackwitz-Fiessler법으로 구하고, 신뢰도해석 결과를 분석하여 LRFD 설계기준(안)의 피로설계트럭모형을 제안하였다. 아울러, 제안된 피로설계트럭모형을 적용하여 단경간 및 3경간 연속 플레이트 및 박스 거더교의 총 16개 실교량에 대한 피로설계를 수행하고, 설계결과를 현 도로교설계기준의 DB-24 하중에 의한 피로설계 결과와 비교하여 LRFD 피로설계트럭 모형의 적용성을 검토하였다.

탄소강재(炭素鋼材)의 작은 표면결함(表面缺陷)에서 성장(成長)하는 표면피로(表面疲勞)균열의 성장특성(成長特性)에 관한 연구(硏究) (A Study on Growth Characteristics of the Surface Fatigue Crack Propagated from a Small Surface Defect in Carbon Steels)

  • 서창민;강용구
    • 대한조선학회지
    • /
    • 제21권1호
    • /
    • pp.35-42
    • /
    • 1984
  • In the present study, rotating bending fatigue tests have been carried out in three kinds of carbon steel specimens; an annealed low carbon steel, an annealed high carbon steel and quenched-tempered high carbon steel; with a small artificial surface defect that might exist in real structures. Fatigue crack lengths have been observed by a method of replication in order to investigate the growth characteristic of fatigue crack in the viewpoints of strength of materials and fracture mechanics. The main results obtained are as follows: 1) The effect of a small surface defect upon the reduction of fatigue limit is considerably large, and the rate of fatigue limit reduction grows in the following order; annealed low carbon steel(mild steel), annealed high carbon steel, quenched-tempered high carbon steel. 2) When the growth rate of surface crack length(2a) was investigated in the viewpoints of fracture mechanics based upon $ ${\Delta}K_{\varepsilon}$, the dependence of stress level and of surface defect size disappear, and there exists a linear relationships between d(2a)/dN and ${\Delta}K_{{\varepsilon}t},\;\Delta_{{\varepsilon}t}\sqrt{{\pi}a}$, on log. plot, i.e, $d(2a)/dN={C{\cdot}{\Delta}K_{\varepsilon}}^3_t$, where ${\Delta}_{{\varepsilon}t}\sqrt{{\pi}a}$ a is the cyclic total strain intensity factor range.

  • PDF

작은 표면균열의 성장특성에 의한 수명예측 (A Fatigue Life Prediction by Growth Characteristics of a Small Surface Crack)

  • 서창민;임창순;강용구
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.617-617
    • /
    • 1989
  • This paper deals with a fatigue life prediction of a surface crack based on the experimentally obtained relationship between surface crack length ratio $a/a_{f}$ and cycle ratio $N/N_{f}$ using micro computer. Firstly $a/a_{f}$-$N/N_{f}$ curves obtained from experimental tests, were assumed as three curves UC(the upper limit curve), LC(the lower limit curve) and MC(the middle curve), and these were utilized to predict the fatigue life. Comparing the calculated values which represent the characteristics of crack growth behaviors from the three assumed curves with the experimental ones, it has been found that in the stable crack growth region, they coincide reasonably well each other. And the differences between the fatigue lives obtained from the assumed curves and the experimental fatigue life did not exceed 20%. Using the characteristics of $a/a_{f}$-$N/N_{f}$ curves, it is possible to predict the da/dN-Kmax curves and the S-$N_{f}$ curves.

작은 표면균열의 성장특성에 의한 수명예측 (A Fatigue Life Prediction by Growth Characteristics of a Small Surface Crack)

  • 서창민;임창순;강용구
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.108-117
    • /
    • 1989
  • This paper deals with a fatigue life prediction of a surface crack based on the experimentally obtained relationship between surface crack length ratio $a/a_{f}$ and cycle ratio $N/N_{f}$ using micro computer. Firstly $a/a_{f}$-$N/N_{f}$ curves obtained from experimental tests, were assumed as three curves UC(the upper limit curve), LC(the lower limit curve) and MC(the middle curve), and these were utilized to predict the fatigue life. Comparing the calculated values which represent the characteristics of crack growth behaviors from the three assumed curves with the experimental ones, it has been found that in the stable crack growth region, they coincide reasonably well each other. And the differences between the fatigue lives obtained from the assumed curves and the experimental fatigue life did not exceed 20%. Using the characteristics of $a/a_{f}$-$N/N_{f}$ curves, it is possible to predict the da/dN-Kmax curves and the S-$N_{f}$ curves.

  • PDF

ECAP가공에 의한 초미세립 순수 티타늄의 피로 특성 향상 (Improvement of Fatigue Properties in Ultrafine Grained Pure Ti after ECAP(Equal Channel Angular Pressing))

  • 이영인;박진호;최덕호;최명일;김호경
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1494-1502
    • /
    • 2005
  • Fatigue life and notch sensitivity of the ultrafine grained pure Ti produced by ECAP was investigated. The ECAPed sample with the true strain of 460$\%$ showed near equiaxed grains with an average size of about 0.3 $\mu$m. After ECAP, the ultimate tensile strength was increased by 60$\%$, while the tensile ductility was decreased by 31$\%$. The ECAPed ultrafine grained pure Ti samples showed high notch sensitivity and significant improvement of high cycle fatigue limit by a factor of 1.67. The ECAPed samples also show high notch sensitivity (K$_{f}$/K$_{t}$ = 0.96). It can be concluded that ECAP is the effective process for achieving high fatigue strength in Ti by increasing its tensile strength through grain refinement

Effects of Grain Size on the Fatigue Properties in Cold-Expanded Austenitic HNSs

  • Shin, Jong-Ho;Kim, Young-Deak;Lee, Jong-Wook
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1412-1421
    • /
    • 2018
  • Cold-expanded austenitic high nitrogen steel (HNS) was subjected to investigate the effects of grain size on the stress-controlled high cycle fatigue (HCF) as well as the strain-controlled low cycle fatigue (LCF) properties. The austenitic HNSs with two different grain sizes (160 and $292{\mu}m$) were fabricated by the different hot forging strain. The fine-grained (FG) specimen exhibited longer LCF life and higher HCF limit than those of the coarse-grained (CG) specimen. Fatigue crack growth testing showed that crack propagation rate in the FG specimen was the same as that in the CG specimen, implying that crack propagation rate did not affect the discrepancy of LCF life and HCF limit between two cold-expanded HNSs. Therefore, it was estimated that superior LCF and HCF properties in the FG specimen resulted from the retardation of the fatigue crack initiation as compared with the CG specimen. Transmission electron microscopy showed that the effective grain size including twin boundaries are much finer in the FG specimen than that in the CG specimen, which can give favorable contributions to strengthening.

고정 방식 차이에 따른 배전 가공전선의 고주기피로 수명 특성 비교 평가 (Clamp Type-dependent HCF Life Estimation of the Overhead Cable for Distribution Grids)

  • 이두영;정진성;김영대;방지예
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권2호
    • /
    • pp.241-248
    • /
    • 2021
  • High cycle fatigue life for the cables with two different types of clamps is estimated comparatively through acceleration testing. The high cycle fatigue fracture of overhead lines is caused mainly by the aeolian vibration which is induced by vortex shedding. It is necessary to manage the integrity of cables continuedly considering that the aeolian vibration is unavoidable since it occurs in steady and relatively low wind velocity. Two types of clamps which are largely used for overhead lines of the distribution grids are selected and failure data are obtained by step stress testing with a electrodynamic shaker with them. The inverse power law is assumed to describe the stress-life relationship and the fatigue limit at any specified life is supposed to follow Weibull distribution. The life of the cable is defined as the number of cycles to the time that one of strands is completely broken. Finally, the fatigue limits of the cables with two clamp types are estimated at the reference life of 500 Mcycles and compared each other based on a bending vibration amplitude.

Structural system reliability-based design optimization considering fatigue limit state

  • Nophi Ian D. Biton;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • 제33권3호
    • /
    • pp.177-188
    • /
    • 2024
  • The fatigue-induced sequential failure of a structure having structural redundancy requires system-level analysis to account for stress redistribution. System reliability-based design optimization (SRBDO) for preventing fatigue-initiated structural failure is numerically costly owing to the inclusion of probabilistic constraints. This study incorporates the Branch-and-Bound method employing system reliability Bounds (termed the B3 method), a failure-path structural system reliability analysis approach, with a metaheuristic optimization algorithm, namely grey wolf optimization (GWO), to obtain the optimal design of structures under fatigue-induced system failure. To further improve the efficiency of this new optimization framework, an additional bounding rule is proposed in the context of SRBDO against fatigue using the B3 method. To demonstrate the proposed method, it is applied to complex problems, a multilayer Daniels system and a three-dimensional tripod jacket structure. The system failure probability of the optimal design is confirmed to be below the target threshold and verified using Monte Carlo simulation. At earlier stages of the optimization, a smaller number of limit-state function evaluation is required, which increases the efficiency. In addition, the proposed method can allocate limited materials throughout the structure optimally so that the optimally-designed structure has a relatively large number of failure paths with similar failure probability.

SF45와 SM45C의 마찰용접 최적화에 따른 회전굽힘피로 특성 (Rotary Bending Fatigue Characteristics According to Optimal Friction Welding of SF45 to SM45C Steel Bars)

  • 공유식;박영환
    • 대한기계학회논문집A
    • /
    • 제41권3호
    • /
    • pp.219-224
    • /
    • 2017
  • 본 연구는 수송기계 축 등에 이용되는 캠 형상 부분만을 기존의 단조품인 SF45와 축 부분은 일반기계구조용 탄소강재인 SM45C를 직경 20 mm를 이용하여 이종 마찰용접을 수행하였다. 최적조건을 규명하기 위해 인장시험 등 용접품질과의 상관관계를 고찰하였고, 또한 최적조건에서 마찰용접 후 열처리를 시행하여 용접재(As-welded)와 후열처리재(PWHT)에 대한 회전굽힘 피로시험을 시행하였다. 결과적으로 두 이종재가 강한 혼합으로 계면에서도 개재물 및 산화막이 플래시로 토출되어 양호한 접합상태임을 확인하였다. 더욱이 모재(SF45)와 후열처리재의 피로한도 각각 180 MPa, 250 MPa로 나타났다. 이는 후열처리재가 SF45 모재에 비해 약 40 %의 피로수명이 향상되었음을 확인하였다.