• Title/Summary/Keyword: fast fractal image decoding

Search Result 14, Processing Time 0.026 seconds

A Study on East Fractal Image Decoder Using a Codebook Image (코드북 영상을 이용한 고속 프랙탈 영상 복호기에 관한 연구)

  • 이기욱;곽노윤
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.434-440
    • /
    • 2003
  • Since Jacquine introduced the image coding algorithm using fractal theory, many fractal image compression algorithms providing good quality at low bit rate have been proposed by Fisher and Beaumount et al.. But a problem of the previous implementations is that the decoding rests on an iterative procedure whose complexity is image-dependent. This paper proposes an iterative-free fractal image decoding algorithm to reduce the decoding time. In the proposed method, under the encoder previously with the same codebook image as an initial image to be used at the decoder, the fractal coefficients are obtained through calculating the similarity between the codebook image and an input image to be encoded. As the decoding process can be completed with received fractal coefficients and predefined initial image without repeated iterations, the decoding time could be remarkably reduced.

  • PDF

A new fractal image decoding algorithm with fast convergence speed (고속 수렴 속도를 갖는 새로운 프랙탈 영상 복호화 알고리듬)

  • 유권열;문광석
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.8
    • /
    • pp.74-83
    • /
    • 1997
  • In this paper, we propose a new fractal image decoding algorithm with fast convergence speed by using the data dependence and the improved initial image estimation. Conventional method for fractal image decoding requires high-degrdd computational complexity in decoding process, because of iterated contractive transformations applied to whole range blocks. On proposed method, Range of reconstruction imagte is divided into referenced range and data dependence region. And computational complexity is reduced by application of iterated contractive transformations for the referenced range only. Data dependence region can be decoded by one transformations when the referenced range is converged. In addition, more exact initial image is estimated by using bound () function in case of all, and an initial image more nearer to a fixed point is estimated by using range block division estimation. Consequently, the convergence speed of reconstruction iamge is improved with 40% reduction of computational complexity.

  • PDF

A fast fractal decoding algorithm using averaged-image estimation (평균 영상 추정을 이용한 고속 플랙탈 영상 복원 알고리즘)

  • 문용호;박태희;김재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.9A
    • /
    • pp.2355-2364
    • /
    • 1998
  • In conventional fractal decoding procedure, the reconstructed image is obtained by a rpredefined number of iterations starting with an arbitrary initial image. Its convergence speed depends on the selection of the initial image. It should be solved to get high speed convergence. In this paper, we theoretically reveal that conventional method is approximately decomposed into the decoding of the DC and AC components. Based on this fact, we proposed a novel fast fractal decoding algorithm made up of two steps. The averaged-image considered as an optimal initial image is estimated in the first step. In the second step, the reconstructe dimag eis genrated from the output image obtained in the first step. From the simulations, it is shown that the output image of the first step approximately converges to the averaged-image with only 15% calculations for one iteration of conventional method. And the proposed method is faster than various decoding mehtods and evenly equal to conventioanl decoding with the averaged-image. In addition, the proposed method can be applied to the compressed data resulted from the various encoding methods because it does not impose any constraints in the encoding procedure to get high decoding speed.

  • PDF

Estimation of an intitial image for fast fractal decoding (고속 프랙탈 영상 복원을 위한 초기 영상 추정)

  • 문용호;박태희;백광렬;김재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.2
    • /
    • pp.325-333
    • /
    • 1997
  • In fractral decoding procedure, the reconstructed image is obtained by iteratively applying the contractive transform to an arbitrary initial image. But this method is not suitable for the fast decoding because convergence speed depends on the selection of initial image. Therefore, the initial image to achieve fast decoding should be selected. In this paper, we propose an initial image estimation that can be applied to various decoding methods. The initial image similar to the original image is estimated by using only the compressed data so that the proposed method does not affect the compression ratio. From the simulation, the PSNR of the proposed initial image is 6dB higher han that of ones iterated output image of conventional decoding with Babaraimage. Computations in addition and multiplication are reduced about 96%. On the other hands, if we apply the proposed initial image to other decoding algorithms, the faster convergence speed is expected.

  • PDF

A Study on Decoding Characteristic Analysis of Non-iterative Fractal Image Compression (무반복 프랙탈 영상 압축의 복호 특성 분석에 관한 연구)

  • Kwak No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.5 no.3
    • /
    • pp.199-204
    • /
    • 2004
  • A problem of many fractal image compression algorithms providing good quality at low bit rate is that the decoding time rests on an iterative procedure whose complexity is imag-dependent. This paper proposes an iterative-free fractal image decoding algorithm to reduce the decoding time. In the proposed method, under the encoder previously with the same codebook image as an initial image to be used at the decoder, the fractal coefficients are obtained through calculating the similarity between the codebook image and an input image to be encoded. As the decoding time could be remarkably reduced. For verifying the validity and universality of proposed method, We evaluated and analyzed the performance of decoding time and image quality for a number of still images and a moving picture with different distributed characteristics.

  • PDF

A Fast Fractal Image Decoding Using the Encoding Algorithm by the Limitation of Domain Searching Regions (정의역 탐색영역 제한 부호화 알고리듬을 이용한 고속 프랙탈 영상복원)

  • 정태일;강경원;권기룡;문광석;김문수
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.125-128
    • /
    • 2000
  • The conventional fractal decoding was required a vast amount computational complexity. Since every range blocks was implemented to IFS(iterated function system). In order to improve this, it has been suggested to that each range block was classified to iterated and non-iterated regions. If IFS region is contractive, then it can be performed a fast decoding. In this paper, a searched region of the domain in the encoding is limited to the range region that is similar with the domain block, and IFS region is a minimum. So, it can be performed a fast decoding by reducing the computational complexity for IFS in fractal image decoding.

  • PDF

A fast decoding algorithm using data dependence in fractal image (프래탈 영상에서 데이타 의존성을 이용한 고속 복호화 알고리즘)

  • 류권열;정태일;강경원;권기룡;문광석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2091-2101
    • /
    • 1997
  • Conventional method for fractal image decoding requires high-degree computational complexity in decoding propocess, because of iterated contractive transformations applied to whole range blocks. In this paper, we propose a fast decoding algorithm of fractal image using data depence in order to reduce computational complexity for iterated contractive transformations. Range of reconstruction image is divided into a region referenced with domain, called referenced range, and a region without reference to domain, called unreferenced range. The referenced range is converged with iterated contractive transformations, and the unreferenced range can be decoded by convergence of the referenced range. Thus the unreferenced range is called data dependence region. We show that the data dependence region can be deconded by one transformation when the referenced range is converged. Consequently, the proposed method reduces computational complexity in decoding process by executing iterated contractive transformations for the referenced range only.

  • PDF

A fast fractal decoding algorithm (고속 프랙탈 복원 알고리즘)

  • 문용호;김형순;손경식;김윤수;김재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.564-575
    • /
    • 1996
  • Conventional decoding procedures have some problems in order to obtain reconstructed images with high speed. In this paper, the solutions of these are studied and a new fast decoding algorithm is proposed. The proposed algorithm uses a convergence criterion that is used to reduce the redundant iteration in the conventional method and to determine continuation of decoding. The initical image similar to roiginal image is estimated firstly in this algorithm. From the simulation resuls, the proposed algorithm is able to achieve the reconstructed image within 3-4 iteration under the objective criterion. Without any increment of the memory, the quality of the image reconstructed by the proposed algorithm has same quality asthe conventional method.

  • PDF

Fractal Image Compression using the Minimizing Method of Domain Region (정의역 최소화 기법을 이용한 프랙탈 영상압축)

  • 정태일;권기룡;문광석
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.1
    • /
    • pp.38-46
    • /
    • 1999
  • In this paper, the fractal image compression using the minimizing method of domain region is proposed. It is minimize to domain regions in the process of decoding. Since the conventional fractal decoding applies to IFS(iterative function system) for the total range blocks of the decoded image, its computational complexity is a vast amount. In order to improve this using the number of the referenced times to the domain blocks for the each range blocks, a classification method which divides necessary and unnecessary regions for IFS is suggested. If necessary regions for IFS are reduced, the computational complexity is reduced. The proposed method is to define the minimum domain region that a necessary region for IFS is minimized in the encoding algorithms. That is, a searched region of the domain is limited to the range regions that is similar with the domain regions. So, the domain region is more overlapped. Therefore, there is not influence on image quality or PSNR(peak signal-to-noise ratio). And it can be a fast decoding by reduce the computational complexity for IFS in fractal image decoding.

  • PDF

Improved Initial Image Estimation Method for a Fast Fractal Image Decoding (고속 프랙탈 영상 부호화를 위한 개선한 초기 영상 추정법)

  • Jeong, Tae-Il;Gang, Gyeong-Won;Mun, Gwang-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.1
    • /
    • pp.68-75
    • /
    • 1997
  • In this paper, we propose the improved initial image estimation method for a fast fractal image decoding. When the correlation between a domain and a range is given as the linear equation, the value of initial image estimation using the conventional method is the intersection between its linear equation and y=x. If the gradient of linear equation is large, that the difference of the value between each adjacent pixels is large, the conventional method has disadvantage which has the impossibility of exact estimation. The method of the proposed initial image estimation performs well by two steps. he first step can improve the disadvantage of the conventional method. The second step upgrades the range value which was found previous step by referring information of its domain. Though the computational complexity for the initial image estimation increses slightly, the total computational complexity decreases by 30% than that of the conventional method because of diminishing in the number of iterations.

  • PDF