• Title/Summary/Keyword: fast encoding

Search Result 319, Processing Time 0.02 seconds

A Three-Step Mode Selection Algorithm for Fast Encoding in H.264/AVC (H.264/AVC에서 빠른 부호화를 위한 3단계 모드 선택 기법)

  • Jeon, Hyun-Gi;Kim, Sung-Min;Kang, Jin-Mi;Chung, Ki-Dong
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.2
    • /
    • pp.163-174
    • /
    • 2008
  • The H.264/AVC provides gains in compression efficiency of up to 50% over a wide range of bit rates and video resolutions compared to previous standards. However, to achieve such high coding efficiency, the complexity of H.264/AVC encoder is also increased drastically than previous ones, mainly because of mode decision. In this paper, we propose a three-step mode decision algorithm for fast encoding in H.264/AVC. In the first step, we select skip mode or inter mode by considering the temporal correlation and spatial correlation. In the second step, if the result of the first step is INTER mode, we select one group between two groups for final mode. In the third step, we select final mode by exploiting the pixel values of error macroblock or the modes of adjacent macroblocks. Simulations show that the proposed method reduces the encoding time by 42% on average without any significant PSNR losses.

  • PDF

An Efficient Mode Decision and Search Region Restriction for Fast Encoding of H.264/AVC (H.264/AVC의 빠른 부호화를 위한 효율적인 모드 결정과 탐색영역 제한)

  • Chun, Sung-Hwan;Shin, Kwang-Mu;Kang, Jin-Mi;Chung, Ki-Dong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.185-195
    • /
    • 2010
  • In this paper, we propose an efficient inter and intra prediction algorithms for fast encoding of H.264/AVC. First, inter prediction mode decision method decides early using temporal/spatial correlation information and pixel direction information. Second, intra prediction mode decision method selects block size judging smoothness degree with inner/outer pixel value variation and decides prediction mode using representative pixel and reference pixel. Lastly, adaptive motion search region restriction sets search region using mode information of neighboring block and predicted motion vector. The experimental results show that proposed method can achieve about 18~53% reduction compared with the existing JM 14.1 in the encoding time. In RD performance, the proposed method does not cause significant PSNR value losses while increasing bitrates slightly.

Ultra-mode Decision Algorithm for Fast Encoding of H.264/AVC Video (H.264/AVC비디오의 고속 부호화를 위한 인트라모드 선택 알고리듬)

  • Kim, Dong-Hyung;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6C
    • /
    • pp.585-593
    • /
    • 2007
  • For the improvement of coding efficiency, the H.264 standard uses new coding tools such as VBS, 1/4-pel accurate ME, multiple references, intra prediction, loop filter, etc. Using these coding tools, H.264 has achieved significant improvements from rate-distortion point of view compared to existing standards. However, the encoder complexity is greatly increased due to these coding tools. We focus on the complexity reduction method of intra-mode decision. Our algorithm first restricts selective prediction modes of Intra4x4 using a simple preprocessing. The prediction modes of Intra4x4 are used for restricting those of the other inter-modes. Simulation results show that the proposed method outperforms other conventional methods and save about 82% of total encoding time.

Fast Inter CU Partitioning Algorithm using MAE-based Prediction Accuracy Functions for VVC (MAE 기반 예측 정확도 함수를 이용한 VVC의 고속 화면간 CU 분할 알고리즘)

  • Won, Dong-Jae;Moon, Joo-Hee
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.361-368
    • /
    • 2022
  • Quaternary tree plus multi-type tree (QT+MTT) structure was adopted in the Versatile Video Coding (VVC) standard as a block partitioning tool. QT+MTT provides excellent coding gain; however, it has huge encoding complexity due to the flexibility of the binary tree (BT) and ternary tree (TT) splits. This paper proposes a fast inter coding unit (CU) partitioning algorithm for BT and TT split types based on prediction accuracy functions using the mean of the absolute error (MAE). The MAE-based decision model was established to achieve a consistent time-saving encoding with stable coding loss for a practical low complexity VVC encoder. Experimental results under random access test configuration showed that the proposed algorithm achieved the encoding time saving from 24.0% to 31.7% with increasing luminance Bjontegaard delta (BD) rate from 1.0% to 2.1%.

A Fast Intra Prediction Method Using Quadtree Structure and SATD in HEVC Encoder (쿼드트리 구조와 SATD를 이용한 HEVC 인코더의 고속 인트라 예측 방식)

  • Kim, Youngjo;Kim, Jaeseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.129-138
    • /
    • 2014
  • This paper proposes a fast intra prediction method to reduce encoding time for the HEVC(high-efficiency video coding) encoder. The proposed fast Intra prediction method uses quadtree structure and SATD(Sum of Absolute Transformed Differences). In HEVC, a $8{\times}8$ SATD value using $8{\times}8$ hadamard transform is used to calculate a SATD value for $8{\times}8$ or larger blocks. The proposed method calculates the best SATD value by using each $8{\times}8$ SATD result in $16{\times}16$ or larger blocks. After that, the proposed method removes a candidate mode for RDO(Rate-Distortion Optimization) based on comparing SATD of the candidate mode and the best SATD. By removing candidate modes, the proposed method reduces the operation of RDO and reduces total encoding time. In $8{\times}8$ block, the proposed method uses additional $4{\times}4$ SATD to calculat the best SATD. The experimental results show that the proposed method achieved 5.08% reduction in encoding time compared to the HEVC test model 12.1 encoder with almost no loss in compression performance.

Tile-level and Frame-level Parallel Encoding for HEVC (타일 및 프레임 수준의 HEVC 병렬 부호화)

  • Kim, Younhee;Seok, Jinwuk;Jung, Soon-heung;Kim, Huiyong;Choi, Jin Soo
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.388-397
    • /
    • 2015
  • High Efficiency Video Coding (HEVC)/H.265 is a new video coding standard which is known as high compression ratio compared to the previous standard, Advanced Video Coding (AVC)/H.264. Due to achievement of high efficiency, HEVC sacrifices the time complexity. To apply HEVC to the market applications, one of the key requirements is the fast encoding. To achieve the fast encoding, exploiting thread-level parallelism is widely chosen mechanism since multi-threading is commonly supported based on the multi-core computer architecture. In this paper, we implement both the Tile-level parallelism and the Frame-level parallelism for HEVC encoding on multi-core platform. Based on the implementation, we present two approaches in combining the Tile-level parallelism with Frame-level parallelism. The first approach creates the fixed number of tile per frame while the second approach creates the number of tile per frame adaptively according to the number of frame in parallel and the number of available worker threads. Experimental results show that both improves the parallel scalability compared to the one that use only tile-level parallelism and the second approach achieves good trade-off between parallel scalability and coding efficiency for both Full-HD (1080 x 1920) and 4K UHD (3840 x 2160) sequences.

Human Visual Perception-Based Quantization For Efficiency HEVC Encoder (HEVC 부호화기 고효율 압축을 위한 인지시각 특징기반 양자화 방법)

  • Kim, Young-Woong;Ahn, Yong-Jo;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.22 no.1
    • /
    • pp.28-41
    • /
    • 2017
  • In this paper, the fast encoding algorithm in High Efficiency Video Coding (HEVC) encoder was studied. For the encoding efficiency, the current HEVC reference software is divided the input image into Coding Tree Unit (CTU). then, it should be re-divided into CU up to maximum depth in form of quad-tree for RDO (Rate-Distortion Optimization) in encoding precess. But, it is one of the reason why complexity is high in the encoding precess. In this paper, to reduce the high complexity in the encoding process, it proposed the method by determining the maximum depth of the CU using a hierarchical clustering at the pre-processing. The hierarchical clustering results represented an average combination of motion vectors (MV) on neighboring blocks. Experimental results showed that the proposed method could achieve an average of 16% time saving with minimal BD-rate loss at 1080p video resolution. When combined the previous fast algorithm, the proposed method could achieve an average 45.13% time saving with 1.84% BD-rate loss.

Fast Motion Estimation Based on a Modified Median Operation for Efficient Video Compression

  • Kim, Jongho
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.53-59
    • /
    • 2014
  • Motion estimation is a core part of most video compression systems since it directly affects the output video quality and the encoding time. The full search (FS) technique gives the highest visual quality but has the problem of a significant computational load. To solve this problem, we present in this paper a modified median (MMED) operation and advanced search strategies for fast motion estimation. The proposed MMED operation includes a temporally co-located motion vector (MV) to select an appropriate initial candidate. Moreover, we introduce a search procedure that reduces the number of thresholds and simplifies the early termination conditions for the determination of a final MV. The experimental results show that the proposed approach achieves substantial speedup compared with the conventional methods including the motion vector field adaptive search technique (MVFAST) and predictive MVFAST (PMVFAST). The proposed algorithm also improves the PSNR values by increasing the correlation between the MVs, compared with the FS method.

A Fast A/D Converter using Digital Discriminators (Digital변별기를 이용한 고속A/D변환기)

  • 이병수;이종악
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.7 no.3
    • /
    • pp.125-129
    • /
    • 1982
  • Most A/D converters which encode baseband signals of several magahertz band width to accuracies such as 8 bits are complez and therefore expensive. This letter suggests that a simple fast digital encoder can be formed the combination of V.C.O. and digital discriminator, automatically elimnating the complex logic process of conventional fast baseband A/D converters. The techique is suitable for encoding video signals to 8bits.

  • PDF

Fast 3D Mesh Compression Using Shared Vertex Analysis

  • Jang, Euee-Seon;Lee, Seung-Wook;Koo, Bon-Ki;Kim, Dai-Yong;Son, Kyoung-Soo
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.163-165
    • /
    • 2010
  • A trend in 3D mesh compression is codec design with low computational complexity which preserves the input vertex and face order. However, this added information increases the complexity. We present a fast 3D mesh compression method that compresses the redundant shared vertex information between neighboring faces using simple first-order differential coding followed by fast entropy coding with a fixed length prefix. Our algorithm is feasible for low complexity designs and maintains the order, which is now part of the MPEG-4 scalable complexity 3D mesh compression standard. The proposed algorithm is 30 times faster than MPEG-4 3D mesh coding extension.