DOI QR코드

DOI QR Code

Human Visual Perception-Based Quantization For Efficiency HEVC Encoder

HEVC 부호화기 고효율 압축을 위한 인지시각 특징기반 양자화 방법

  • Kim, Young-Woong (Dept. of Computer Engineering, Kwangwoon University) ;
  • Ahn, Yong-Jo (Dept. of Computer Engineering, Kwangwoon University) ;
  • Sim, Donggyu (Dept. of Computer Engineering, Kwangwoon University)
  • 김영웅 (광운대학교 컴퓨터공학과) ;
  • 안용조 (광운대학교 컴퓨터공학과) ;
  • 심동규 (광운대학교 컴퓨터공학과)
  • Received : 2016.07.04
  • Accepted : 2017.01.05
  • Published : 2017.01.30

Abstract

In this paper, the fast encoding algorithm in High Efficiency Video Coding (HEVC) encoder was studied. For the encoding efficiency, the current HEVC reference software is divided the input image into Coding Tree Unit (CTU). then, it should be re-divided into CU up to maximum depth in form of quad-tree for RDO (Rate-Distortion Optimization) in encoding precess. But, it is one of the reason why complexity is high in the encoding precess. In this paper, to reduce the high complexity in the encoding process, it proposed the method by determining the maximum depth of the CU using a hierarchical clustering at the pre-processing. The hierarchical clustering results represented an average combination of motion vectors (MV) on neighboring blocks. Experimental results showed that the proposed method could achieve an average of 16% time saving with minimal BD-rate loss at 1080p video resolution. When combined the previous fast algorithm, the proposed method could achieve an average 45.13% time saving with 1.84% BD-rate loss.

본 논문에서는 사람의 인지특성을 기반으로 대조 민감도에 의해 나타나는 특성을 모델링 한 JND (Just Noticeable Difference) 모델을 비디오 코딩에 적용하여 압축률을 높이는 방법을 제안한다. 제안하는 방법은 JND 모델에 따른 임계치를 기준으로 양자화 단계에서 비가시 신호를 제한하여 주관적 화질을 유지하면서 비트율을 낮추는 방법으로, 변환을 통해 주파수 도메인으로 변환된 잔차 신호들을 양자화 단계에서 입력으로 받아 신호제한 및 양자화를 수행한다. 양자화 단계에서 주파수 도메인의 신호가 JND 관점에서 유사하게 인지되는 기준 임계치를 구해 잔차 신호에서 비가시 신호를 제한하고 양자화를 수행한 후, 최적의 율-인지왜곡 비용을 갖는 양자화 계수를 선택함으로써 비트율을 절감시킨다. 제안하는 알고리즘의 성능 검증은 최신 비디오 압축 표준인 HEVC (High Efficiency Video Coding)의 참조 소프트웨어인 HM16.0에 적용했으며, CTC (Common Test Condition)의 Random Access 모드에서 HM 16.0을 통해 압축된 영상 대비 평균 4.11%, BQTerrace 영상의 양자화 파라미터 22에서 최대 17.22%의 비트율 절감을 보였으며, Low Delay 모드에서 평균 7.16%, 최대 22.55%, All intra 모드에서 평균 13.41%, 최대 21.64%의 비트율 절감을 보였다. 5명의 평가자들의 주관적 화질 측정으로 평균 DMOS (Difference Mean Opinion Score) 값은 최대 약 0.36 최소 0 정도의 분포를 보였다.

Keywords

References

  1. T. Wiegrand, G-J. sullivan, G Bjontegaard, and A. Luthra, "Overview of the H.264/AVC video coding standard," IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560-576, July 2003. https://doi.org/10.1109/TCSVT.2003.815165
  2. T. Wiegand, J. Ohm, G. Sullivan, W. Han, R. Joshi, T. Tan, and K. Ugur, "Special section on the joint call for proposals on high efficiency video coding (HEVC) standardization," IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 12, pp. 1661-1666, December 2010. https://doi.org/10.1109/TCSVT.2010.2095692
  3. G. Sullivan, J. Ohm, W. Han, and T. Wiegand, "Overview of the High Efficiency Video Coding (HEVC) standard," IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649-1668, 2012. https://doi.org/10.1109/TCSVT.2012.2221191
  4. I.-K. Kim, J. Min, T. Lee, W.-J. Han, and J. Park, "Block partitioning structure in the HEVC standard," IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1697-1706, December 2012. https://doi.org/10.1109/TCSVT.2012.2223011
  5. G. J. Sullivan and R. Wiegand, "Rate-distortion optimization for video compression," IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 74-90, November 1998. https://doi.org/10.1109/79.733497
  6. Z. Lu, W. Lin, X. Yang, E. Ong, and S. Yao, "Modeling visual attention's modulatory aftereffects on visual sensitivity and quality evaluation," IEEE Transactions on Image Processing, vol 14, no. 11, pp. 1928-1942, 2005. https://doi.org/10.1109/TIP.2005.854478
  7. X. Zhang, W. S. Lin, and P. Xue, "Improve estimation for just-noticeable visual distortion," Signal Processing, vol. 85, no. 4, pp. 795-808, 2005. https://doi.org/10.1016/j.sigpro.2004.12.002
  8. E. Ong, W. Lin, Z. Lu, and S. Yao, "Colour perceptual video quality metric," IEEE International Conference on Image Processing, vol. 3, 2005.
  9. C. H. Chou and Y. C. Li, "A perceptual tuned subband image coder based on the measure of just-noticeable-distortion profile," IEEE Transactions on Circuits and Systems for Video Technology, vol. 5, no. 6, pp. 467-476, December 1995. https://doi.org/10.1109/76.475889
  10. C. H. Chou and C. W. Chen, "A perceptually optimized 3-D subband codec for video communication over wireless channels," IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, no. 2, pp. 143-156, April 1996. https://doi.org/10.1109/76.488822
  11. Y. J. Chin and T. Berger, "A software-only video codec using pixelwise conditional differential replenishment and perceptual enhancements," IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, no. 3, pp. 438-450, April 1999. https://doi.org/10.1109/76.754773
  12. R. J. Safranek and J. D. Johnston, "A perceptually tuned sub-band image coder with image dependent quantization and post-quantization data compression," ICASSP-89, IEEE International Conference on Acoustics, Speech, and Signal Processing, 1989.
  13. I. Hontsch and L. J. Karam, "Adaptive image coding with perceptual distortion control," IEEE Transactions on Image Processing, vol. 11, no. 3, pp. 213-222, 2002. https://doi.org/10.1109/83.988955
  14. ITU-R Recommendation BT. 500-11, "Methodology for the subjective assessment of the quality of television pictures," no. 22, pp. 25-34, 2002.
  15. C. Lee, P. Lin, L. Chen, and W. Wang, "Image enhancement approach using the just-noticeable difference model of the human visul system," J. Electorn. Imaging, vol. 21, July 2012.
  16. R.B. Wolfgang, C.I. Podilchuk, E.J. Delp, "Perceptual watermarks for digital images and video," Proceedings of the IEEE, vol. 87, no. 7, pp. 1108-1126, 1999. https://doi.org/10.1109/5.771067
  17. A.J Ahumada, H.A. Peterson, "Luminance-model-based DCT quantization for color image compression," Hum. Vision Visual Process. Digital Display III pp. 365-74, 1992.
  18. Zhang, X. H., W. S. Lin, and Ping Xue. "Improved estimation for just-noticeable visual distortion," Signal Processing, vol. 85, no. 4, pp. 795-808, 2005. https://doi.org/10.1016/j.sigpro.2004.12.002
  19. Ahumada, A. J., H. A. Peterson, and A. B. Watson. "An improved detection model for DCT coefficients quantization," Human Vision, Visual Processing, and Digital Display IV. Allebach ed., SPIE (1993).
  20. J. Kim, S. Bae and M. Kim, "An HEVC-compliant perceptual video coding scheme based on JND models for variable block-sized transform kernels," IEEE Transactions on Circuits and Systems for Video Technology. vol. pp, no. 99, pp. 1, 2015.
  21. Wei, Zhenyu, and King N. Ngan. "Spatio-temporal just noticeable distortion profile for grey scale image/video in DCT domain," IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 3, pp. 337-346, 2009. https://doi.org/10.1109/TCSVT.2009.2013518
  22. Kelly, D. H. "Motion and vision. II. Stabilized spatio-temporal threshold surface," JOSA, vol. 69, no. 10, pp. 1340-1349, 1979. https://doi.org/10.1364/JOSA.69.001340
  23. Foley, John M. and Geoffrey M. Boynton. "New model of human luminance pattern vision mechanisms: analysis of the effects of pattern orientation, spatial phase, and temporal frequency," Computational Vision Based on Neurobiology. International Society for Optics and Photonics, 1994.
  24. Y. J. Ahn, T. J. Hwang, S. E. Yoo, W. -J. Han, and D. G. Sim, "Statistical characteristics and complexity analysis of HEVC encoder software," Journal of Broadcasting & Electronic Media, vol. 17, no. 6, pp. 1091-1105, Nov. 2012.
  25. Ngan, King N. Kin S. Leong, and H. Singh. "Adaptive cosine transform coding of images in perceptual domain," IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, no. 11, pp. 1743-1750, 1989. https://doi.org/10.1109/29.46556
  26. D. G. Sim, H. H. Jo, "Understanding of HEVC standard and technology," Hongrung Publishing Company, Korea, 2015.
  27. Van den Branden Lambrecht, Christian J. and Murat Kunt. "Characterization of human visual sensitivity for video imaging applications," Signal Processing, vol. 67, no. 3, pp. 255-269, 1998. https://doi.org/10.1016/S0165-1684(98)00043-7
  28. Nill, Norman B. "A visual model weighted cosine transform for image compression and quality assessment," IEEE Transactions on communications, vol. 33, no. 6, pp. 551-557, 1985. https://doi.org/10.1109/TCOM.1985.1096337
  29. Y. J. Ahn, W. J. Han, and D. G. Sim, "Study of decoder complexity for HEVC and AVC standards based on tool-by-tool comparison," SPIE Applications of Digital Image Processing XXXV, Proceedings of SPIE Volume 8499, Paper number 8499-32, San Diego, USA, August, 2012.