• 제목/요약/키워드: fast dynamics

검색결과 389건 처리시간 0.027초

등가계를 적용한 열차의 동적거동에 관한 연구 (A Study on the Dynamics of Train Using Equivalent System)

  • 조동현;임진수
    • 소음진동
    • /
    • 제10권1호
    • /
    • pp.117-122
    • /
    • 2000
  • The dynamics of train has recently been analysed in many cases and very complex nonlinear creep theories have been developed by many engineers. But much calculation time is spent and latest complex creep theories cannot be adapted in train analysis. In this study efficient and fast train analysis method was suggested. Many of degree of freedom were reduced in multi-vehicle system using equivalent system and fast calculation time was achieved. And the accuracy of equivalent system method was proved by linear and nonlinear dynamic analysis.

  • PDF

특이섭동 기법 기반 제어 시스템에 대한 샘플링 영향 분석 및 개선 - 특이섭동 기법 기반 STT 미사일 디지털 자동조정장치 설계에의 적용 (Analysis and Improvement of Time Sampling effects on Singular Perturbation based Control Systems - Its Aplication to Design of Singular Pertubation based STT Missible Digital Autopilot)

  • 정선태
    • 전자공학회논문지SC
    • /
    • 제37권3호
    • /
    • pp.33-43
    • /
    • 2000
  • 특이섭동 기법을 이용한 제어 시스템의 설계가 가능하기 위해서는 무엇보다도, 빠른 동력학의 안정성이 중요하다. 그런데, 제어기의 디지털 구현으로 인하여, 이 빠른 동력학의 안정도가 영향을 받을 수 있다. 본 논문은 최근의 개발된 우수한 성능의 특이섭동 기반의 STT 자동조정장치(autopilot) 설계의 경우를 들어 이러한 특이섭동 기법에 기반하여 설계된 제어 시스템에 대한 샘플링 영향을 조사하고 개선된 제어기 설계의 예를 제시하여, 특이섭동 기반 제어 시스템 에 대한 샘플링 영향 분석의 필요성 및 유효성을 밝혔다.

  • PDF

A fast precise integration method for structural dynamics problems

  • Gao, Q.;Wu, F.;Zhang, H.W.;Zhong, W.X.;Howson, W.P.;Williams, F.W.
    • Structural Engineering and Mechanics
    • /
    • 제43권1호
    • /
    • pp.1-13
    • /
    • 2012
  • A fast precise integration method (FPIM) is proposed for solving structural dynamics problems. It is based on the original precise integration method (PIM) that utilizes the sparse nature of the system matrices and especially the physical features found in structural dynamics problems. A physical interpretation of the matrix exponential is given, which leads to an efficient algorithm for both its evaluation and subsequently the solution of large-scale structural dynamics problems. The proposed algorithm is accurate, efficient and requires less computer storage than previous techniques.

자기부상 초정밀 고속 공구 서보 시스템의 모델과 제어 (MODELING AND CONTROL OF A MAGNETIC SERVO-LEVITATED FAST-TOOL SERVO SYSTEM)

  • Hector-M.Gutierrez;Paul-I.Ro
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.348-353
    • /
    • 1994
  • Magnetic Servo Levitation (MSL) has been proposed as a method to drive a fast-tool servo system. This paper discusses some fundamental control and modeling issues in the development of a long-range high-bandwidth fast-tool servo based on MSL. A resursive linear model is developed to describe the system's dynamics linear model is developed to describe the system's dynamics, and further used to discuss controller design. For a given controller architecture, the performance of two controllers is then compared, one based on an approximation to the inverse plant dynamics, the second based on a adaptive neural network.

  • PDF

샘플링 시간에 대해 개선된 Singular Perturbation 기반 STT missile 디지털 autopilot 설계 (Design of an improved STT missile digital autopilot with respect to sampling time)

  • 정선태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.468-471
    • /
    • 1997
  • In this paper, we investigate the time-sampling effects on the digital implementation of singular perturbation based STT autopilot with excellent performance and propose a compensation method for the time-sampling effects. In digitization of analog STT autopilot, it is found that the stability margin of the fast dynamics is mostly affected to lead to rapid decrease. Under the this analysis, a composite digital controller with additional compensator for fast dynamics is proposed to improve the time-sampling effect and a simulation verifies the result.

  • PDF

Impedance Control of Flexible Base Mobile Manipulator Using Singular Perturbation Method and Sliding Mode Control Law

  • Salehi, Mahdi;Vossoughi, Gholamreza
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권5호
    • /
    • pp.677-688
    • /
    • 2008
  • In this paper, the general problem of impedance control for a robotic manipulator with a moving flexible base is addressed. Impedance control imposes a relation between force and displacement at the contact point with the environment. The concept of impedance control of flexible base mobile manipulator is rather new and is being considered for first time using singular perturbation and new sliding mode control methods by authors. Initially slow and fast dynamics of robot are decoupled using singular perturbation method. Slow dynamics represents the dynamics of the manipulator with rigid base. Fast dynamics is the equivalent effect of the flexibility in the base. Then, using sliding mode control method, an impedance control law is derived for the slow dynamics. The asymptotic stability of the overall system is guaranteed using a combined control law comprising the impedance control law and a feedback control law for the fast dynamics. As first time, base flexibility was analyzed accurately in this paper for flexible base moving manipulator (FBMM). General dynamic decoupling, whole system stability guarantee and new composed robust control method were proposed. This proposed Sliding Mode Impedance Control Method (SMIC) was simulated for two FBMM models. First model is a simple FBMM composed of a 2 DOFs planar manipulator and a single DOF moving base with flexibility in between. Second FBMM model is a complete advanced 10 DOF FBMM composed of a 4 DOF manipulator and a 6 DOF moving base with flexibility. This controller provides desired position/force control accurately with satisfactory damped vibrations especially at the point of contact. This is the first time that SMIC was addressed for FBMM.

부유식 풍력발전 시스템 동역학 해석 프로그램 개발 연구 (A Study on a Dynamics Simulation Program Development for Floating Wind Turbines)

  • 임채환;송진섭;정태영;문석준;고진용;이성균;배대성;배동희
    • 풍력에너지저널
    • /
    • 제2권2호
    • /
    • pp.30-37
    • /
    • 2011
  • A floating wind turbine dynamic simulation program, WindHydro, is newly developed taking into account wind inflow and incident wave. WindHydro consists of 5 modules, HDFloat for hydrodynamics, HDProp for hydrodynamic property calculation, HDMoor for mooring dynamics, AeroDyn for aerodynamics, DAFUL for multi-body dynamics with nonlinear elasticity, and interface program that connects each calculation module. A turbulent wind and regular wave load case is simulated for the 5-MW OC3-Hywind with a spar bouy platform and catenary mooring lines. The results are compared with the results of the FAST(developed by NREL). As a result, the overall system responses from WindHydro and FAST agree well although some differences in the generator responses are observed.

A High-Power Step-up Converter with High Efficiency and Fast Control-to-Output Dynamics

  • Kang, Jeong-il;Roh, Chung-Wook;Moon, Gun-Woo;Youn, Myung-Joong
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.78-87
    • /
    • 2001
  • A new high-power step-up based on the two-module parallel-input (PISO) modular dual inductor-fed push-pull converter is proposed. The proposed converter is operated at a constant duty cycle and employs and auxiliary circuit to control the output voltage with a phase-shift between two modules. It shows a high efficiency due to the greatly reduced switch turn-off stress. It also shows a high and linear voltage conversion ratio, low current stress in the output capacitor, and fast control-to-output dynamics. The operation principles and the mathematical models of the proposed converter are presented. Features of the proposed converter are discussed in comparison with the two-module PISO modular dual inductor-fed push-pull converter. Also, experimental results from a 50kHz, 800W, 350 Vdc prototype with an input voltage range of 20-32 Vdc are provided to confirm the validity of the proposed converter. The new converter compares favorably with the conventional counterpart, and is considered well siuted to high-power step-up applications.

  • PDF

Comparison of simulated platform dynamics in steady/dynamic winds and irregular waves for OC4 semi-submersible 5MW wind-turbine against DeepCwind model-test results

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • 제6권1호
    • /
    • pp.1-21
    • /
    • 2016
  • The global performance of the 5 MW OC4 semisubmersible floating wind turbine in random waves with or without steady/dynamic winds is numerically simulated by using the turbine-floater-mooring fully coupled dynamic analysis program FAST-CHARM3D in time domain. The numerical simulations are based on the complete second-order diffraction/radiation potential formulations along with nonlinear viscous-drag force estimations at the body's instantaneous position. The sensitivity of hull motions and mooring dynamics with varying wave-kinematics extrapolation methods above MWL(mean-water level) and column drag coefficients is investigated. The effects of steady and dynamic winds are also illustrated. When dynamic wind is added to the irregular waves, it additionally introduces low-frequency wind loading and aerodynamic damping. The numerically simulated results for the 5 MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model-test results by Technip/NREL/UMaine. Those numerical-simulation results have good correlation with experimental results for all the cases considered.

A Practical Exciter Model Reduction Approach For Power System Transient Stability Simulation

  • Kim, Soobae
    • 조명전기설비학회논문지
    • /
    • 제29권10호
    • /
    • pp.89-96
    • /
    • 2015
  • Explicit numerical integration methods for power system transient stability simulation require very small time steps to avoid numerical instability. The EXST1 exciter model is a primary source of fast dynamics in power system transients. In case of the EXST1, the required small integration time step for entire system simulation increases the computational demands in terms of running time and storage. This paper presents a practical exciter model reduction approach which allows the increase of the required step size and thus the method can decrease the computational demands. The fast dynamics in the original EXST1 are eliminated in the reduced exciter model. The use of a larger time step improves the computational efficiency. This paper describes the way to eliminate the fast dynamics from the original exciter model based on linear system theory. In order to validate the performance of the proposed method, case studies with the GSO-37 bus system are provided. Comparisons between the original and reduced models are made in simulation accuracy and critical clearing time.