• Title/Summary/Keyword: farnesol

Search Result 19, Processing Time 0.025 seconds

Identification of volatile flavor compounds in Jeju citrus fruits (제주감귤류의 휘발성 향기성분의 확인)

  • Hong, Young Shin;Kim, Kyong Su
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.977-988
    • /
    • 2016
  • The volatile flavor compounds in five Jeju citrus fruit varieties (Cheonhyehyang, Hallabong, Jinjihyang, Hwanggeum hyang and Redhyang) were extracted by simultaneous distillation-extraction (SDE) using solvent mixture of n-pentane and diethyl ether (1:1, v/v) and analyzed by using gas chromatography-mass spectrometry (GC-MS). The number of aroma compounds were identified with : 104 (4,939.77 mg/kg) in Cheonhyehyang, 98 (3,286.38 mg/kg) in Hallabong, 105 (3,317.56 mg/kg) in Jinjihyang, 102 (4,293.39 mg/kg) in Hwanggeumhyang, and 108 (4,049.94 mg/kg) in Redhyang. The detected main volatile compounds were; limonene, sabinene, ${\beta}$-myrcene, ${\alpha}$-pinene, ${\beta}$-pinene, linalool, 4-terpineol, ${\alpha}$-terpineol, (E)-${\beta}$-ocimene and ${\gamma}$-terpinene. Among the identified volatiles compounds, ethyl-benzene, nonanol, 1-p-menthen-9-al, (E)-isocarveol, methyl salicylate, ${\alpha}$-terpinen-7-al, perilla alcohol, and ethyl-dodecanoate were detected in Cheonhyehyang. only Furthermore, ${\beta}$-chamigrene and ${\alpha}$-selinene were in Hallabong only; 3-hydroxybutanal, (E)-2-nonenal, isoborneol, octyl acetate, (E)-2-undecenal, ${\beta}$-ylangene and guaia-6,9-diene in Jinjihyang. ${\rho}$-Cymenene, ${\beta}$-thujone, selina-4,11-diene and (E,E)-2,6-farnesol in Hwanggeumhyang only; and ${\rho}$-cymen-8-ol, bornyl acetate, carvacrol, bicycloelemene, ${\alpha}$-cubebene and 7-epi-${\alpha}$-selinene in Redhyang only. This study confirmed the differences in composition and content of volatile aroma components in five varieties of Jeju citrus fruits.

Analysis of Essential Oil from Perennial Herbaceous Plants (다년생 초본류의 향기성분 분석)

  • Chung, Ha-Sook;Park, Jun-Yeon;Ahn, Young-Hee;Lee, Sang-Hyun;Shin, Kuk-Hyun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.3
    • /
    • pp.179-186
    • /
    • 2009
  • The chemical composition of essential oil from the perennial herbaceous plants (Houttuynia cordata, Filipendula glaberrima, Peucedanum japonicum, and Ainsliaea acerifolia) was determined by GC/MS spectrometric analysis with the aid of NBS, Wiley Library and RI indice searches. The major constituents identified were $\alpha$-phellandrene (18.97%), $\gamma$-terpinene (12.32%), decanal (8.72%), 1-decanol (10.92%), decanoic acid (12.12%), and 2-undecanone (12.32%) from H. cordata, farnesol (2.83%), l-$\alpha$-terpineol (2.72%), benzenmethanol (2.03%), (Z)-3-hexen-1-ol (4.32%), and T-muurolol (2.07%) from F. glaberrima, $\alpha$-phellandrene (14.25%), endobornyl acetate (3.84%), heptanal (47.52%), octanal (2.65%), (E,E)-2,4-decadienal (2.75%), and octanoic acid (4.52%) from P. japonicum, and geyrene (9.74%), $\beta$-cubebene (11.15%), berkheyaradulen (22.32%), $\beta$-elemene (6.21%), (-)-A-selinene (4.85%), benzaldehyde (4.52%), and benzenacetaldehyde (3.40%) from A. acerifolia.

Volatile Flavor Compounds from Raw Mugwort Leaves and Parched Mugwort Tea (생쑥과 덖음쑥차의 향기성분)

  • 김영숙;이종호;김무남;이원구;김정옥
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.261-267
    • /
    • 1994
  • Parched mugwort tea was manufactured from mugwort (Artemisia asicatica nakai) leaves by traditional green tea preparation method. Volatile flavor compounds were collected by Tenax GC and they separated on DB-5 capillary column ($60m\;\times\;0.25mm$ i.d.) Fifty eight compounds were isolated and identified by GC-MS from the volatiles. Eleven compounds incucluding benzaldehyde, pinene, myrcene, cineole, 2-phrrolidinonoe, camphor, thujong, 1-acetylpiperidine, caryophyllene, coumarin, and farnesol among the compounds identified were considered as important compounds contributing mugwort-like flavor to the parched mugwort tea. The mixture of these eleven authentic compounds could reproduce aroma of mugwort leaves harvested in April. As results, the concentrations of these eleven flavor compounds in parched mugwort tea may indicate the strength of mugwort-like aroma of the tea.

  • PDF

Phytochemical Screening, Isolation, Characterization of Bioactive and Biological Activity of Bungkang, (Syzygium polyanthum) Root-bark Essential Oil

  • Umaru, Isaac John;Umaru, Kerenhappuch I.;Umaru, Hauwa A.
    • The Korean Journal of Food & Health Convergence
    • /
    • v.6 no.3
    • /
    • pp.5-21
    • /
    • 2020
  • Bungkang (Syzygium polyanthum) is a medium to tall plant which produces medicinal root-bark, the plant is normally found along inland river bank and produces small white flowers and fruits. Essential oils are among the most interesting components of the plant extracts consisting mostly of monoterpenoid or sesquiterpenoids. They are used as therapeutic agents in ethno, conventional, and complementary alternative medicines. Investigation and evaluation of the essential oil of Syzygium polyanthum as well as the antibacterial, antioxidant and antifungal activity was ascertained. The experiment was performed. 100 chemical constituents were obtained and two pure compound was isolated as Eugenol (1) and Farnesol (2). Significant growth inhibition of Staphylococcus aureus, (ATCCⓒ25923) Klebsiellia pneumonia (ATCCⓒ19155), Salmonella typhi (ATCCⓒ14028) and Escherichia coli (ATCC©25922) and the fungal strains Aspergillus flavin, Aspergillus niger, Candida, tropicalis, and Fusarium oxysporium was observed from the essential oil at concentration of 500 ㎍/mL. Antioxidant potential was observed to be strong of 18.42 ㎍/mL when compared to the control of 15.23 ㎍/mL. The result indicated that the oil obtained from root-bark of Syzygium polyanthum can be considered as an agent for antioxidant, antibacterial and antifungal in pharmaceutical food and cosmetic industries trails.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Inhibition of Monoamine Oxidase B by Cigarette Smoke Constituents

  • Lim, Heung-Bin;Sohn, Hyug-Ok;Lee, Young-Gu;Moon, Ja-Young;Kang, Young-Kook;Kim, Yong-Ha;Lee, Un-Chul;Lee, Dong-Wook
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.19 no.2
    • /
    • pp.136-144
    • /
    • 1997
  • Cigarette smoking is known to suppress both 1-methy14-phenyl-155,Ltetrahydropy-ridine (MPTP)-induced parkinsonism and idiopathic Parkinson's disease (PD). However, the precise mechanism underlying its protective action against PD is not clearly elucidated yet. In order to find possible clue on the mechanism of protective action of smoking, we investigated the inhibitory effect of cigarette smoke components on rat brain mitochondria1 monoamine oxidase B (MAO-B), responsible enzyme for the activation of MPTP to its toxic metabolitesr and identified the components having an inhibitory potency on this enzyme from cigarette smoke. Total 31 eligible constituents including nicotine were selected from cigarette smoke condensates via solvents partitioning and silica gel chromatographic separation, and inhibitory potencies of 19 components on MAO-B were determined. Hydroquinone and methylcatechol, the phenolic components, showed the strongest inhibitory potencies on MAO-B activity in the components tested. 3,4-Dihydroxybenzylamino, myosmine and indole in basic fracton, eugenol in phenolic fraction, and farnesol in neutral fraction also inhibited the enzyme activity dose-dependently. Among tobacco alkaloids tested only myosmine was effective for the inhibition of this enzyme. These results suggest that the decrease in MAO-B activity by such components derived from cigarette smoke seems to be related to the suppression of MPTP-induced neurotoxicity and to the less incidence of Parkinson's disease in smokers than in nonsmokers.

  • PDF

Analyses of Lipid and Volatile Components in Juniper Seed(Juniperus rigida Sieb. et Zucc.) (노간주나무(Juniperus rigida Sieb. et Zucc.) 열매의 지질 및 향기성분 분석)

  • 신원선;하재호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.6
    • /
    • pp.795-800
    • /
    • 2003
  • Juniper seed oil extracted by steam distillation has been a useful material as a medicine, insect repellant, and flavorant for alcoholic beverages. As the result of juniper seed oil analysis, the acid value, saponification value, unsaponification value phosphorus contents, and refractive index were 91.04, 85.15, 15.52, 11.04 ppm, 1.47, respectively The content of neutral lipids, glycolipids and phospholipids were 85.4%, 12.2% and 2.4%, respectively. From the fatty acids analysis, the major fatty acids from the juniperseed harvested in August were lauric acid (31.9% ), palmitic acid (28.0% ), stearic acid (9.9%), and oleic acid (8.5%) . However, maturated seed oil harvested in October mainly consists of linoleic acid (47.6%), linolenic acid (17.6%), oleic acid (16.1%), and palmitic acid (11.9%). Upon these analyses, fatty acids composition of juniper seed oil depends on the seed maturation. According to volatile compounds analyses of essential oil extracted using steam distillation method and SPME, the major compounds were $\beta$-myrcene, $\alpha$-pinene, $\beta$-farnescene, $\beta$-cubebene, limonene, trans-caryo-phyllene, $\alpha$-terpinolene, camphene, sabinene, and $\beta$-pinene.

Volatile Flavor Components of Angelica gigas Nakai by the Storage Conditions (저장조건에 따른 당귀의 정유성분 변화)

  • Choi, Sung-Hee;Kim, Hye-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.513-518
    • /
    • 2000
  • Volatile flavor components of Angelica gigas Nakai affected by different storage time and temperature were investigated. The aroma compounds was extracted by a simultaneous distillation and extraction method using a Likens and Nickerson's apparatus. The concentrated extract was analyzed and identified by GC and GC-MS equipped polar and nonpolar column. The yields of volatile concentrates of Angelica gigas Nakai by low temperature storage were larger than those by room temperature storage. The GC patterns of the flavor components of both resembled but the peak area of each flavor compounds was little different. Main volatile flavor components of Angelica gigas Nakai by using polar column were ${\alpha}-pinene$, ${\beta}-pinene$, terpineol, farnesol, cadinene, guaiol, isolongifolene and eudesmol etc. Main volatile flavor components of Angelica gigas Nakai by using nonpolar column were camphene, ${\beta}-pinene$, elemol, eudesmol etc.

  • PDF

Effect of Red Ginseng Total Saponin on Sciatic Nerve Regeneration (홍삼사포닌이 좌골신경 재생에 미치는 영향)

  • Han, Hye-Jeong;Lee, Hae-June;Kang, Seong-Soo;Lee, Soo-Han;Cho, Ick-Hyun;Lee, Jong-Hwan;Nah, Seung-Yeol;Park, Chang-Hyun;Uhm, Chang-Sub;Bae, Chun-Sik
    • Journal of Ginseng Research
    • /
    • v.27 no.3
    • /
    • pp.103-109
    • /
    • 2003
  • We investigated the effect of ginseng total saponin (GTS) on the regeneration process of experimentally crush injured rat sciatic nerves. The bilateral sciatic nerves of fifty adult male Sprague-Dawley rats were compressed surgically with a straight hemostat for 30 seconds with 1 mm width. Twenty rats were divided into four groups to test the dose-dependent effect of GTS (0, 50, 100, or 150 mg/kg, i.p.). Saline for vehicle control group or GTS dissolved in saline was administerd for three weeks. After that period of time, the numbers of total myelinated axon and degenerated myelin in the sciatic nerves of bilateral legs were examined and analyzed using image analysis system to confirm a morphological effect of GTS. We found that the most effective concentration of GTS for the regeneration of damaged sciatic nerve was 150 mg/kg. In another set of experiment, thirty rats were divided into two groups as saline-treated vehicle group and GTS-treated group (150 mg/kg, i.p.) for three weeks. Every week we examined the numbers of total myelinated axon and degenerated myelin in the sciatic nerves of bilateral legs using image analysis system to evaluate the effect of GTS on injured nerves. We found that the regeneration of damaged sciatic nerves was facilitated in GTS-treated group compared to saline-treated group until two weeks. However, after that period of time we could not observe the significant difference between saline-treated group and GTS-treated group. These results suggest that GTS is a useful adjuvant therapy for the regeneration of the peripheral nerve injury in short period of treatment.