• Title/Summary/Keyword: far-infrared irradiation

Search Result 33, Processing Time 0.02 seconds

Effect of Far-Infrared Irradiation and Heat Treatment on the Antioxidant Activity of Extracts from Defatted Soybean Meal (원적외선 조사와 열처리가 탈지대두박 추출물의 항산화능에 미치는 영향)

  • Rim, A-Ram;Jung, Eun-Sil;Kim, So-Young;Lee, Seung-Cheol
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.400-403
    • /
    • 2005
  • The effect of far-infrared (FIR) irradiation and heat treatment on the antioxidant activity of extracts from defatted soybean meal (DSM) was evaluated. DSM were placed in pyrex petri dishes (8.0 cm diameter) and irradiated at $150^{\circ}C$ for 5, 10, 15, 20, 40 or 60 min with a FIR heater or simple heater. After FIR irradiation or simple heat treatment at same conditions, methanol extracts of DSM were prepared and total phenol contents (TPC), radical scavenging activity (RSA) and reducing power of the extracts were determined. The antioxidant activities of the extracts increased as the time of heating or FIR-irradiation increased. When DSM were FIR-irradiated at $150^{\circ}C$ for 15 min, the values of TPC, RSA, and reducing power of the extracts increased from 31.62 mg/ml to 57.51 mg/ml, 11.6% to 53.1%, and 0.068 to 0.147, respectively, compared to the untreated controls. Simple heat treatment of DSM under the same conditions ($150^{\circ}C$ for 15 min) also increased the TPC, RSA, and reducing power of the extracts from to 58.04 mg/ml, 65.2% and 0.160, respectively. The results indicated that appropriate FIR-irradiation or heat treatment on DSM increased the antioxidant activities of methanolic extracts.

Effect of Far-infrared Irradiation on the Antioxidant Activity of Extracts from Phellinus igniarius and Ganoderma lucidum (원적외선 처리가 상황버섯과 영지버섯 추출물의 항산화능에 미치는 영향)

  • Lee, Seung-Cheol;Ju, Young-Cheoul;Kim, Jeong-Han
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.386-389
    • /
    • 2007
  • The antioxidant activities of Phellinus igniarius (PI) and Ganoderma lucidum (GL) extracts were evaluated after far-infrared (FIR) irradiation. PI and GL were irradiated at $120^{\circ}C$ for 30, 60, 90 and 120 min with a FIR heater (2-14 ${\mu}m$), and then extracted by distilled water for 1 hr. Total sugar contents (TSC), total phenolic contents (TPC), radical scavenging ability (RSA), and reducing power (RP) were significantly increased by FIR irradiation. When PI was irradiated for 120 min, the TSC, TPC, RSA, and RP values of the PI extracts increased from 10.1 to 25.9 mg/g, 6.1 to 13.4 mg/g, 23.8 to 51.5%, and 0.222 to 0.363, respectively, compared to the untreated controls. The GL extracts, under the same conditions ($120^{\circ}C$ for 120 min), also increased in TSC, TPC, RSA, and RP from 11.1 to 22.6 mg/g, 2.5 to 5.8 mg/g, 14.5 to 18.6%, and 0.271 to 0.296, respectively. These results indicate that appropriate FIR irradiation of PI and GL could enhance the antioxidant activities of their extracts by increasing amounts of phenolic and sugar compounds.

Effect of Far-Infrared Irradiation and Heat Treatment on the Antioxidant Activity of Extracts from Peanut (Arachis hypogaea) Shell (땅콩껍질 추출물의 항산화능에 대한 원적외선과 열처리 효과)

  • Rim, A-Ram;Jung, Eun-Sil;Jo, Seong-Chun;Lee, Seung-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.1114-1117
    • /
    • 2005
  • The effects of far-infrared (FIR) irradiation and heat treatment on the antioxidant activity of extracts from peanut shells was evaluated. Peanut shells were placed in pyrex petri dishes (8.0cm diameter) and irradiated at $150^{\circ}C$ for 5, 10, 15, 20, 40 or 60min with a FIR heater. After FIR irradiation or simple heat treatment at same conditions, methanol extracts of peanut shells were prepared and total phenol contents (TPC), radical scavenging activities (RSA) and reducing powers of the extracts were determined. The antioxidant activities of the extracts increased as the time of heating or FIR-irradiation increased. When peanut shells were FIR­irradiated at $150^{\circ}C$ for 5 min, the values of TPC, RSA, and reducing power of the extracts increased from 40.17mg/mL to 42.30mg/mL, $67.7\%\;to\;76.3\%$, and 0.569 to 0.639, respectively, compared to the untreated controls. Simple heat treatment of peanut shell under the same conditions $(150^{\circ}C\;for\;5min)$ also increased the TPC, RSA, and reducing power of the extracts from 40.17mg/mL to 43.52mg/mL, 67.7\%\;to\;79.3\%$ and from 0.569 to 0.623, respectively. The results indicate that appropriate FIR-irradiation or heat treatment on peanut shells could increase the antioxidant activities of methanolic extracts.

Far Infrared Ray Irradiation Stimulates Antioxidant Activity in Vitis flexuosa THUNB. Berries

  • Eom, Seok-Hyun;Jin, Cheng-Wu;Park, Hyoung-Jae;Kim, Eun-Hye;Chung, Ill-Min;Kim, Myong-Jo;Yu, Chang-Yeon;Cho, Dong-Ha
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.5
    • /
    • pp.319-323
    • /
    • 2007
  • Wild grapes have been used as traditional medicinal use and alcoholic beverage production in Korea. The objective of this study is to improve antioxidant properties in Sae-muru by far infrared ray (FIR) treatment, with expecting potential benefits of FIR treatment for wild grape products during manufacturing processes. FIR treatment in berries induced increased content of catechin, epicatechin gallate, epigallocatechin gallate, gallic acid, rutin, ellagic acid, and resveratrol, while content of epicatechin and epigallocatechin was decreased. Although FIR treatment resulted either increased or decreased chemical component groups, presenting in HPLC chromatograms, antioxidant activity in Sae-muru extract was significantly increased by the FIR treatment. Our results suggest that FIR treatment should be an efficient process in the production of high content of bioactive molecules in Sae-muru.

Effect of Far-Infrared Irradiation on the Antioxidant Activity and Catechin of Green Tea (원적외선 처리가 녹차의 항산화능과 카테킨 함량에 미치는 영향)

  • 김소영;정석문;이승철
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.4
    • /
    • pp.753-756
    • /
    • 2004
  • The effect of far-infrared (FIR) treatment on total flavanols contents and catechin composition of green tea were determined by vanillin spectroscopic and HPLC methods. Total flavanols content of green tea increased from 145 mg/g to 160 mg/g after FIR treatment for 10 min, but decreased from 146 to 90 mg/g after FIR treatment for 20 min. Among nine catechins of green tea, epicatechin derivatives decreased continuously with treatment time of FIR, while catechin derivatives increased up to 10 min and decreased to 20 min. These results indicate that FIR treatment exerting appreciable influence on catechin content of green tea may be useful as one of processing method improving quality of green tea.

Stimulating Effects of Far-infrared Ray Radiation on the Release of Antioxidative Phenolics in Grape Berries

  • Eom, Seok-Hyun;Park, Hyung-Jae;Seo, Dong-Wan;Kim, Won-Woo;Cho, Dong-Ha
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.362-366
    • /
    • 2009
  • This research was conducted to determine the effect of far-infrared ray (FIR) irradiation of grape berries as a potential application for manufacturing grape products with a high amount of antioxidant chemicals. Two grape cultivars, the red grape cv. Campbell Early and the white grape cv. Thompson Seedless, produced increased amounts of crude extracts, in the FIR treatments compared to a non-FIR treatment control with same temperature. However, total phenolic concentrations and antioxidant activity in a 'Campbell Early' increased in the extracts following FIR treatment, whereas those of 'Thompson Seedless' did not increase significantly. High performance liquid chromatography (HPLC) analysis indicated that functional components affecting antioxidant activity were significantly increased in the extract of 'Campbell Early' following FIR treatment. Our results indicate that application of FIR treatment in heat process of grapes increases levels of antioxidative phenolic chemicals and it may help to enhance the availability of antioxidative compounds in various grape food products.