• 제목/요약/키워드: false-positive error

검색결과 72건 처리시간 0.025초

비정상 트래픽 분석과 퍼지인식도를 이용한 NePID 설계 (Design of NePID using Anomaly Traffic Analysis and Fuzzy Cognitive Maps)

  • 김혁진;류상률;이세열
    • 한국산학기술학회논문지
    • /
    • 제10권4호
    • /
    • pp.811-817
    • /
    • 2009
  • IT 시스템 기반의 네트워크 환경의 급속한 발전은 지속적인 연구방향의 중요한 이슈의 결과이다. 침입시도 탐지는 관심분야의 하나인 것이다. 최근에 다양한 기술을 기반으로 하는 침입시도탐지들이 제안되고 있으나 이러한 기술은 여러 형태의 침입시도의 패턴 중에 한가지 형태 및 시스템에 적용이 가능한 것이다. 또한 새로운 형태 침입시도를 탐지하지 못하고 있다. 그러므로 새로운 형태를 인식하는 침입탐지 관련 기술이 요구되어 지고 있다. 본 연구에서는 퍼지인식도와 비정상 트래픽 분석을 이용한 네트워크 기반의 침입탐지기법(NePID)을 제안한다. 이 제안은 패킷 분석을 통하여 서비스거부공격과 유사한 침입시도를 탐지하는 것이다. 서비스거부공격은 침입시도의 형태를 나타내며 대표적인 공격으로는 syn flooding 공격이 있다 제안한 기법은 syn flooding을 탐지하기 위하여 패킷정보를 수집 및 분석한다. 또한 피지인식도와 비정상 트래픽 분석을 적용하여 판단모듈의 분석 결과를 토대로 기존의 서비스 거부 공격의 탐지 툴과의 비교분석을 하였으며 실험데이터로는 MIT Lincoln 연구실의 IDS 평가데이터 (KDD'99)를 이용하였다. 시뮬레이션 결과 최대평균 positive rate는 97.094% 탐지율과 negative rate는 2.936%을 얻었으며 이 결과치는 KDD'99의 우승자인 Bernard의 결과치와 유사한 수준의 값을 나타내었다.

The advantage of topographic prominence-adopted filter for the detection of short-latency spikes of retinal ganglion cells

  • Ahn, Jungryul;Choi, Myoung-Hwan;Kim, Kwangsoo;Senok, Solomon S.;Cho, Dong-il Dan;Koo, Kyo-in;Goo, Yongsook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권5호
    • /
    • pp.555-563
    • /
    • 2017
  • Electrical stimulation through retinal prosthesis elicits both short and long-latency retinal ganglion cell (RGC) spikes. Because the short-latency RGC spike is usually obscured by electrical stimulus artifact, it is very important to isolate spike from stimulus artifact. Previously, we showed that topographic prominence (TP) discriminator based algorithm is valid and useful for artifact subtraction. In this study, we compared the performance of forward backward (FB) filter only vs. TP-adopted FB filter for artifact subtraction. From the extracted retinae of rd1 mice, we recorded RGC spikes with $8{\times}8$ multielectrode array (MEA). The recorded signals were classified into four groups by distances between the stimulation and recording electrodes on MEA (200-400, 400-600, 600-800, $800-1000{\mu}m$). Fifty cathodic phase-$1^{st}$ biphasic current pulses (duration $500{\mu}s$, intensity 5, 10, 20, 30, 40, 50, $60{\mu}A$) were applied at every 1 sec. We compared false positive error and false negative error in FB filter and TP-adopted FB filter. By implementing TP-adopted FB filter, short-latency spike can be detected better regarding sensitivity and specificity for detecting spikes regardless of the strength of stimulus and the distance between stimulus and recording electrodes.

영상 기반의 차량 검출 및 차간 거리 추정 방법 (Vision-based Vehicle Detection and Inter-Vehicle Distance Estimation)

  • 김기수;조재수
    • 대한전자공학회논문지SP
    • /
    • 제49권3호
    • /
    • pp.1-9
    • /
    • 2012
  • 본 논문에서는 영상 센서를 이용한 강인한 차량 검출 및 차간거리 추정 알고리즘을 제안한다. 제안된 차량 검출 알고리즘은 차량의 가장 큰 특징인 차량 하단의 그림자부분과 차량의 뒷바퀴 부분을 추출하기 위해 Haar-like 특징들과 차량 뒷부분의 방향성 에지특징을 동시에 활용하기 때문에 더욱 강인한 차량 검출 효과가 있다. 차량의 그림자에 해당하는 Haar-like 특징에 추가적인 방향성 에지특징은 차량이 아닌 부분을 잘못 검출하는 오검출률(false-positive error)을 현격히 줄이는 효과가 있고, 차량 추적기법을 통해 전체적인 수행 속도를 크게 개선한다. 그리고 차간거리 추정 알고리즘에서는 먼저 영상에 나타난 차량의 위치를 통해 추정하는 방법과 차량의 폭을 이용한 두 방법의 장단점을 분석한 후, 차량의 위치를 이용하는 방법이 가지고 있는 문제점과 차량의 폭을 이용한 방법의 단점을 극복하면서, 차간거리의 정확도를 높일 수 있는 개선된 방법을 제안한다. 제안된 차량 검출 및 차간거리 추정 알고리즘의 효용성을 입증하기 위해 다양한 실험영상들을 통해 그 효과를 입증한다.

위·변조 영상의 에지 에너지 정보를 이용한 영상 포렌식 판정 알고리즘 (Image Forensic Decision Algorithm using Edge Energy Information of Forgery Image)

  • 이강현
    • 전자공학회논문지
    • /
    • 제51권3호
    • /
    • pp.75-81
    • /
    • 2014
  • 디지털 영상의 배포에서, 저작권 침해자에 의해 영상이 불법으로 위 변조되어 유통되는 심각한 문제가 대두되어 있다. 이러한 문제를 해결하기 위하여, 본 논문에서는 위 변조된 디지털 영상의 에지 에너지 정보를 이용한 영상 포렌식 판정 알고리즘을 제안한다. 제안된 알고리즘은 SA (Streaking Artifacts)와 SPAM (Subtractive Pixel Adjacency Matrix)을 이용하여, 원 영상의 JPEG 압축률 (QF=90, 70, 50, 30)에 따른 에지정보와 질의영상의 에지정보를 추출하고, 이를 각각 비교하여 위 변조 여부를 판정한다. 원 영상과 질의영상의 에지정보 매칭은 JPEG 압축률 조합의 임계치 (TCJCR : Threshold by Combination of JPEG Compression Ratios)에 따라 이루어진다. 실험을 통하여, TP (True Positive)와 FN (False Negative)은 87.2%와 13.8%이며, 산출된 최소평균 판정 에러는 0.1349이다. 그리고 제안된 알고리즘의 성능평가에서 민감도 (Sensitivity)와 1-특이도(1-Specificity)의 AUROC (Area Under Receiver Operating Characteristic) 커브 면적은 0.9388로 'Excellent(A)' 등급임을 확인하였다.

다중척도 모델의 결합을 이용한 효과적 인 침입탐지 ((Effective Intrusion Detection Integrating Multiple Measure Models))

  • 한상준;조성배
    • 한국정보과학회논문지:정보통신
    • /
    • 제30권3호
    • /
    • pp.397-406
    • /
    • 2003
  • 정보통신기술이 발전함에 따라 내부자의 불법적인 시스템 사용이나 외부 침입자에 의한 중요 정보의 유출 및 조작을 알아내는 침입탐지시스템에 대한 연구가 활발히 이루어지고 있다. 이제까지는 네트워크 패킷, 시스템 호출 감사자료 등의 척도에 은닉 마르코프 모델, 인공 신경망, 통계적 방법 등의 모델링 방법을 적용하는 연구가 이루어졌다. 그러나 사용하는 척도와 모델링 방법에 따라 취약점이 있어 탐지하지 못하는 침입이 많은데 이는 침입의 형태에 따라 흔적을 남기는 척도가 다르기 때문이다. 본 논문에서는 이러한 단일척도 침입탐지시스템의 단점을 보완하기 위해 시스템 호출, 프로세스의 자원점유율, 파일 접근이벤트 등의 세 가지 척도에 대하여 은닉 마르코프 모델, 통계적 방법, 규칙기반 방법을 사용하여 모델링한 후, 그 결과를 규칙기반 방법으로 결합하는 침입탐지 방법을 제안한다. 실험결과 다양한 침입 패턴에 대하여 다중척도 결합방법이 매우 낮은 false-positive 오류율을 보여 그 가능성을 확인할 수 있었다.

교정사전과 신문기사 말뭉치를 이용한 한국어 철자 오류 교정 모델 (A Spelling Error Correction Model in Korean Using a Correction Dictionary and a Newspaper Corpus)

  • 이세희;김학수
    • 정보처리학회논문지B
    • /
    • 제16B권5호
    • /
    • pp.427-434
    • /
    • 2009
  • 인터넷 및 모바일 환경의 빠른 발전과 함께 신조어나 줄임말과 같은 철자 오류들을 포함하는 텍스트들이 활발히 통용되고 있다. 이러한 철자 오류들은 텍스트의 가독성을 떨어뜨림으로써 자연어처리 응용들을 개발하는데 걸림돌이 된다. 이러한 문제를 해결하기 위해서 본 논문에서는 철자오류 교정사전과 신문기사 말뭉치를 이용한 철자 오류 교정 모델을 제안한다. 제안 모델은 구하기 쉬운 신문기사 말뭉치를 학습 말뭉치로 사용하기 때문에 데이터 구축비용이 크지 않다는 장점이 있다. 또한 교정사전 기반의 단순 매칭 방법을 사용하기 때문에 띄어쓰기 교정 시스템이나 형태소 분석기와 같은 별도의 외부 모듈이 필요 없다는 장점이 있다. 신문기사 말뭉치와 실제 휴대폰에서 수집한 문자 메시지 말뭉치를 이용한 실험 결과, 제안 모델은 다양한 평가 척도에서 비교적 높은 성능(오교정률 7.3%, F1-척도 97.3%, 위양성율 1.1%)을 보였다.

Robust Sign Recognition System at Subway Stations Using Verification Knowledge

  • Lee, Dongjin;Yoon, Hosub;Chung, Myung-Ae;Kim, Jaehong
    • ETRI Journal
    • /
    • 제36권5호
    • /
    • pp.696-703
    • /
    • 2014
  • In this paper, we present a walking guidance system for the visually impaired for use at subway stations. This system, which is based on environmental knowledge, automatically detects and recognizes both exit numbers and arrow signs from natural outdoor scenes. The visually impaired can, therefore, utilize the system to find their own way (for example, using exit numbers and the directions provided) through a subway station. The proposed walking guidance system consists mainly of three stages: (a) sign detection using the MCT-based AdaBoost technique, (b) sign recognition using support vector machines and hidden Markov models, and (c) three verification techniques to discriminate between signs and non-signs. The experimental results indicate that our sign recognition system has a high performance with a detection rate of 98%, a recognition rate of 99.5%, and a false-positive error rate of 0.152.

Estimation in Group Testing when a Dilution Effect exists

  • Kwon, Se-Hyug
    • Communications for Statistical Applications and Methods
    • /
    • 제13권3호
    • /
    • pp.787-794
    • /
    • 2006
  • In group testing, the test unit consists of a group of individuals and each group is tested to classify units from a population as infected or non-infected or estimate the infection rate. If the test group is infected, one or more individuals in the group are presumed to be infected. It is assumed in group testing that classification of group as positive or negative is without error. But, the possibility of false negatives as a result of dilution effects happens often in practice, specially in many clinical researches. In this paper, dilution effect models in group testing are discussed and estimation methods of infection rate are proposed when a dilution effect exists.

Exploration of errors in variance caused by using the first-order approximation in Mendelian randomization

  • Kim, Hakin;Kim, Kunhee;Han, Buhm
    • Genomics & Informatics
    • /
    • 제20권1호
    • /
    • pp.9.1-9.6
    • /
    • 2022
  • Mendelian randomization (MR) uses genetic variation as a natural experiment to investigate the causal effects of modifiable risk factors (exposures) on outcomes. Two-sample Mendelian randomization (2SMR) is widely used to measure causal effects between exposures and outcomes via genome-wide association studies. 2SMR can increase statistical power by utilizing summary statistics from large consortia such as the UK Biobank. However, the first-order term approximation of standard error is commonly used when applying 2SMR. This approximation can underestimate the variance of causal effects in MR, which can lead to an increased false-positive rate. An alternative is to use the second-order approximation of the standard error, which can considerably correct for the deviation of the first-order approximation. In this study, we simulated MR to show the degree to which the first-order approximation underestimates the variance. We show that depending on the specific situation, the first-order approximation can underestimate the variance almost by half when compared to the true variance, whereas the second-order approximation is robust and accurate.

The Unified Framework for AUC Maximizer

  • Jun, Jong-Jun;Kim, Yong-Dai;Han, Sang-Tae;Kang, Hyun-Cheol;Choi, Ho-Sik
    • Communications for Statistical Applications and Methods
    • /
    • 제16권6호
    • /
    • pp.1005-1012
    • /
    • 2009
  • The area under the curve(AUC) is commonly used as a measure of the receiver operating characteristic(ROC) curve which displays the performance of a set of binary classifiers for all feasible ratios of the costs associated with true positive rate(TPR) and false positive rate(FPR). In the bipartite ranking problem where one has to compare two different observations and decide which one is "better", the AUC measures the quantity that ranking score of a randomly chosen sample in one class is larger than that of a randomly chosen sample in the other class and hence, the function which maximizes an AUC of bipartite ranking problem is different to the function which maximizes (minimizes) accuracy (misclassification error rate) of binary classification problem. In this paper, we develop a way to construct the unified framework for AUC maximizer including support vector machines based on maximizing large margin and logistic regression based on estimating posterior probability. Moreover, we develop an efficient algorithm for the proposed unified framework. Numerical results show that the propose unified framework can treat various methodologies successfully.