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Introduction 

It is important to understand the causality between two phenotypes to uncover the 
pathogenesis of diseases. Some strategies exist for assessing causality in epidemiological 
studies. Mendelian randomization (MR) is a technique that uses genetic variants as in-
strumental variables (IVs) to estimate the causal effect of an exposure on an outcome [1]. 
In accordance with Mendel’s laws of inheritance, alleles are randomly inherited from par-
ents. Therefore, the genotypes of offspring can be considered independent of confound-
ing factors. Furthermore, the fact that genotypes are fixed and are not affected by pheno-
types obviates the reverse causation problem. For these reasons, genetic variants naturally 
meet many of the basic assumptions of IVs. 

Summary statistics released from large genome-wide association studies recently began 
to facilitate MR by providing exposure effect sizes for multiple genetic variants [2]. The 
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Mendelian randomization (MR) uses genetic variation as a natural experiment to investi-
gate the causal effects of modifiable risk factors (exposures) on outcomes. Two-sample 
Mendelian randomization (2SMR) is widely used to measure causal effects between expo-
sures and outcomes via genome-wide association studies. 2SMR can increase statistical 
power by utilizing summary statistics from large consortia such as the UK Biobank. How-
ever, the first-order term approximation of standard error is commonly used when applying 
2SMR. This approximation can underestimate the variance of causal effects in MR, which 
can lead to an increased false-positive rate. An alternative is to use the second-order ap-
proximation of the standard error, which can considerably correct for the deviation of the 
first-order approximation. In this study, we simulated MR to show the degree to which the 
first-order approximation underestimates the variance. We show that depending on the 
specific situation, the first-order approximation can underestimate the variance almost by 
half when compared to the true variance, whereas the second-order approximation is ro-
bust and accurate. 
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type of MR analysis using an external dataset for quantifying expo-
sure effect is called a two-sample MR design (2SMR). An advan-
tage of 2SMR is that the statistical power can be increased by 
merging summary statistics from various sources including large 
consortia such as the UK Biobank [3]. The causal effect between 
an exposure and an outcome is estimated by the ratio between the 
reported genetic effect to the exposure in an external dataset and 
the observed genetic effect to the outcome in the target dataset. 
Since there are multiple variants, the ratio estimates over multiple 
variants are usually combined into a single estimate via the in-
verse-variance weighted method. 

In 2SMR, the standard error of the estimated ratio is conven-
tionally approximated by the first-order term from the delta meth-
od. As stated by Thomas et al. [4], however, this approximation 
can lead to an underestimation of the variance. This underestima-
tion can lead to both increased power and an increased false-posi-
tive rate (FPR). An alternative is to use the second-order approxi-
mation of the standard error, which can considerably correct for 
the deviation of the first-order approximation. 

In this study, we extensively simulate MR to show the impact of 
this first-order approximation on the FPR and power of MR. We 
simulate several different situations to evaluate which study design 
parameters affect the errors of the first-order approximation, and 
also compare the errors of the first-order approximation to those 
of the second-order approximation. 

Methods 

Genetic variants as instrumental variables 
Genetic variants such as single-nucleotide polymorphisms (SNPs) 
have several properties that make them appropriate as an instru-
ment of exposure. The random inheritance of the alleles makes the 
genotype distribution independent of socio-economic factors and 
lifestyle factors such as income [5]. Inherited alleles are not 
changed from birth by diseases or conditions, except in rare cases 
of somatic mutations. However, some assumptions still need to be 
satisfied to ensure the validity of a genetic variant as an IV (Fig. 1). 
Three basic assumptions must hold for a genetic variant to be used 
as an IV for MR [6]. 
IV1. The genetic variant is associated with the exposure. 
IV2. The genetic variant influences the outcome only through the 
exposure. 
IV3. The genetic variant is independent of confounding factors af-
fecting the exposure-outcome relationship. 

Whether these assumptions are satisfied in various conditions 
has been discussed elsewhere [7]. Herein, we simply accept these 

assumptions and proceed to the description of MR. 

Basic model of MR and the first-order approximation of 
variance 
In this section, we describe the basic model of MR along with the 
commonly used first-order variance approximation (Fig. 1). Let G 
be an IV (e.g., a SNP), X be an exposure such as body mass index, 
and Y be an outcome, such as disease. We can set the relationships 
between variables (G, X, and Y) via a linear regression model. 

If we assume that all IV assumptions are satisfied, then βX≠0 be-
cause of IV1 and βY = βX × β because of IV2 and IV3. That is, G 
(Fig. 1) affects Y (outcome) only through X (exposure). It is as-
sumed that the error terms εX and εY follow normal distributions 
and are independent in the case of 2SMR of two disjoint samples. 
Even in the case of two non-overlapping samples, a report has stat-
ed the sample correlation between β^X and β^Y can be ignored [8]. 
The ratio estimate β̂ =  β̂X/ β̂Y reflects the causal effect between ex-
posure and outcome, and is consistent asymptotically.  

To test whether β≠0, it is essential to obtain the variance esti-
mate of β̂. The commonly used first-order approximation is 

                                . The first-order approximation method involves 
treating the denominator β^X as a constant. However, because of the

 innate uncertainty in β^X, we can expect that                  tends to un-
derestimate the true variance of β̂.

Fig. 1. Diagram depicting the relationships of instrumental variable 
(IV), exposure, outcome and confounder. Under the assumption 
of Mendelian randomization, IV should not affect the confounder 
(red cross). G denotes an IV which is SNP in our case, X denotes an 
exposure, Y denotes an outcome and U denotes the confounder 
such as smoking.
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The second-order approximation method of variance of 
estimated causal effects 
Thomas et al. [4] suggested a second-order approximation of the 
variance of β̂. With the delta method, one can approximate the 
variance of causality β̂ as follows.  

Since we use different samples (2SMR), we can set Cov (β^X/ β̂Y 
) = 0, as X and Y are from non-overlapping samples. Therefore, we 
obtain the following approximation.

The second term is always positive. Therefore, if researchers use 
only the first term from this approximation for the variance, this 
can lead to an underestimation of the standard error.  

Simulation design 
We designed simulations to evaluate the magnitude of error in the 
first-order approximation method. We assumed specific true val-
ues for β and βX, which also gave us the true value of βY = β × βX. We 
assumed the intercepts βX0 = 0.03 and βY0 = 0.03, and the errors 

Var(εX) = sd(εX) = 0.3 and    Var(εY) = sd(εY) = 0.3. We inde-
pendently generated genotypes (SNP alleles) GX and GY , which 
are composed of 0, 1, and 2 from the distribution Binomial(2, 
MAF), where MAF denotes the minor allele frequency. We gener-
ated (X|GX, Y|GY) by adding noise with mean 0 and variance 
(Var(εX), Var(εY)) to (βX0+βX GX, βY0+βY GY). Then we obtained  
β^X and β^Y via simple linear regression. We can expect β^X and β^Y to 
be randomly distributed by  

where Nx is the size of the reference dataset used in 2SMR and Ny 
is the size of the target sample.

To approximate Var(β̂), we can use either the first-order or the 
second-order approximation:

Our simulation allowed us to empirically obtain a very accurate 
estimate of Var(β̂) by repeating the simulation many times (we set 
the number of simulations as 100,000 in our study) with the same 
assumptions and calculating the observed variance of β̂. This al-
lowed us to compare the first and second-order approximations to 
the empirically obtained values.  

We provide the R script code to run the entire simulation pipe-
line as Supplementary Data.

Results 

We performed empirical simulations to compare the two types of 
analytical approximations: the classical way, in which only the 
first-order term is used, and the recently suggested way [4], which 
includes up to the second-order term. We also obtained an accu-
rate estimate of the variance by empirically repeating simulations 
100,000 times. Assuming that the empirically obtained variance is 
the gold standard, we calculated the ratio of the estimated variance 
to the gold standard. 

In our simulations, we varied multiple parameters. We varied the 
N-ratio (Nx/Ny), we also varied β (the magnitude of causal effect) 
and MAF. Fig. 2 shows that the analytical approximation that con-
tained variance up to the second-order term was almost as accurate 
as the empirical estimate, whereas the first-order approximation 
method was often largely inaccurate depending on the situation. 

Fig. 2A shows that the error due to the first-order approximation 
decreased as the number of individuals (Ny) decreased from 
200,000 to 2,000 (as the N-ratio increased from 1 to 100). The ra-
tio was 0.84 when Ny was 100,000, which is equal to Nx/2 (N-ra-
tio = 2). The ratio rose to 0.99 when Ny was 2,000 (N-ratio =  
100). The mean of the ratios was 0.98, which translates to a re-
duced SE(β̂) by    0.98 = 0.99 times in the first-order approxima-
tion. Fig. 2B shows that the errors increased when the actual causal 
effect (β) between the exposure and outcome increased from 0.01 
to 1. Therefore, if there is not a strong causal effect between the 
exposure and outcome in MR, the error from the first-order ap-
proximation would be small. The mean of the ratios of the first-or-
der approximation was 0.93. Fig. 2C shows that, interestingly, the 
ratio appeared to be independent of the MAF of the variant. The 
mean of the ratios in this simulation was 0.93 in the first-order 
case.  

We then analyzed the impact of the underestimated variance. If 
the variance is underestimated, the FPR can increase. We assumed 
the null hypothesis of no causal effect and generated 100,000 sam-
ples under an environment equivalent to that of Fig. 2A. We calcu-
lated the FPR based on the significance threshold of α = 0.05. Fig. 
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Fig. 3. The scatter plots of false-positive rate (FPR) and statistical power. (A) The scatter plot of relationship between the N-ratio in the 
simulation of Fig. 2A and FPR. If N-ratio = 2 (Ny = 100,000 and Nx = 200,000), the FPRs were 0.071 (the dark red colored large dot) for 
the first-order approximation and 0.049 (the dark blue colored large dot) for the second-order approximation. To calculate FPR values, we 
generated 100,000 samples from the null hypothesis of no causal effect. (B) The scatter plot of relationship between the N-ratio the power. 
We generated 100,000 samples with β = 0.6 which is the causal effect of the exposure on the outcome.

BA

Fig. 2. The ratio of the approximation of the variance of causal effect estimate to the true value. (A) We varied the N-ratio (Nx/Ny) value 
from 1 to 100 assuming Nx = 200,000, βX = 0.02, β = 0.6, and minor allele frequency (MAF) = 0.2. (B) We varied the value β, i.e. the ratio of 
βX and βY from 0.01 to 1 assuming βX = 0.02, Nx = 200,000, Ny = 10,000 and MAF = 0.2. (C) We varied the MAF from 0.02 to 0.5 assuming β = 1, 
βX = 0.02, Nx = 200,000 and Ny = 10,000. The true value was estimated by empirical simulations (Nsim = 100,000).

A B C

3A shows the relationship between the N-ratio and the FPR. No-
tably, when the variance was underestimated by a factor of 0.84, as 
shown in Fig. 2A (for the case of an N-ratio =  2—that is, Ny =  
100,000 and Nx =  200,000), the FPR of the first-order approxima-

tion method increased to 0.071 (the dark red colored large dot in 
Fig. 3A), while the FPR of the second-order approximation meth-
od was 0.049 (the dark blue colored large dot in Fig. 3A), corre-
sponding to approximately 0.7 times that of the first-order case. 
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The average FPR in the second-order approximation method was 
0.049, whereas the average FPR in the first-order approximation 
was 0.052. These findings indicate that the second-order approxi-
mation can be a good choice to prevent inflation of the FPR. 

We also analyzed the statistical power (Fig. 3B). Since the vari-
ance of β̂ is underestimated, the first-order approximation method 
may also tend to increase the power (or underestimate the 
false-negative rate). To compare the powers of the first and the 
second-order approximation methods, we generated 100,000 sam-
ples under an environment equivalent to that of Fig. 2A, with β =  
0.6, which denotes the causal effect of the exposure on the out-
come. Under this setting, the power of the first-order approxima-
tion was similar to that of the second-order approximation (on av-
erage 1.01 times greater). 

Discussion 

In this study, we performed simulations to evaluate the errors in 
the variance estimate of causal effects in 2SMR. We simulated a 
range of study parameters and showed that the commonly used 
first-order approximation can be inaccurate depending on the situ-
ation, while the second-order approximation is consistently accu-
rate. We then showed that the underestimated variance can lead to 
a significant increase in the FPR. 

In our simulations, the variance errors due to the first-order ap-
proximation were dependent on parameters such as the N-ratio 
and the β-ratio. When the number of samples in the target study 
increased while the number of samples in the external dataset for 
exposure association was fixed, the errors became larger. This sug-
gested that in future studies, a larger study size may correspond to 
increased error from the first-order approximation method. Fur-
thermore, as the true causal effect increased, so did errors. Interest-
ingly, the errors appeared to be independent of the MAF. 

In this study, we simply assumed the use of a single SNP as an IV 
in 2SMR. The causal effect between an exposure and an outcome 
is usually obtained by merging the ratio per variant (β) via the in-
verse-variance weighted method over a large number of variants. 
In this extended multi-variant model, we expect that the variance 
of the final estimate will also be affected by the errors induced by 
the first-order approximation, because the ratio for all variants is 
affected regardless of MAF. Then, the standard error of the causal 
effect, β̂, would be dependent on the same parameters (N-ratio 
and the magnitude of beta) as in the extended model. Some other 
issues, such as linkage disequilibrium and pleiotropy, should also 
be addressed in the extended multivariate model.

Overall, our study suggests that the use of the second-order ap-

proximation is always preferable, since it provides an accurate esti-
mate of the variance regardless of the situation. However, when 
the IV-exposure association is much greater than the IV-outcome 
association (i.e., β is very small), we observed no significant differ-
ence between the first- and second-order approximations. There-
fore, we expect that whether one must apply the second-order ap-
proximation to avoid an increased FPR will depend on many fac-
tors, including the actual range of β. 
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