• Title/Summary/Keyword: fall cone test

Search Result 28, Processing Time 0.026 seconds

Alternative Methods for Classification on Weathered Strata (풍화토층의 구분을 위한 시험법의 적용)

  • Son, Young-Hwan;Noh, Soo-Kack;Kim, Seong-Pil;Chang, Pyoung-Wuck
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.63-69
    • /
    • 2009
  • The undisturbed specimens used in this research were sampled in the field by the sequential sampling method. In addition, four testing methods were applied to identify for the characteristics and classification of weathered strata. N-value by standard penetration test was obtained from in the field and then analyzed using normalization method. Other methods such as X-ray grain size distribution, X-ray fluorescence spectroscopy(XRF), and fall cone test were carried out in the lab. These analyzed results indicate that distribution of particle, composition of minerals are changed in accordance with the degree of weathering, unusual strata and depth. Consequently, the weathered strata can be extensively separated into two parts according to the test results and each part was shown different in the strata characteristics. It can be prospected that mechanical characteristics should be different, even though mechanical tests were not applied. Furthermore, these results not only make up for the error by one testing method but also contribute more effectively and economically to the design and the construction.

Laboratory investigation for engineering properties of sodium alginate treated clay

  • Cheng, Zhanbo;Geng, Xueyu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.465-477
    • /
    • 2022
  • The formation of biopolymer-soil matrices mainly depends on biopolymer type and concentration, soil type, pore fluid and phase transfer to influence its strengthening efficiency. In this study, the physical and mechanical properties of sodium alginate (SA) treated kaolinite are investigated through compaction test, thread rolling teat, fall cone test and unconfined compression test with considering biopolymer concentration, curing time, initial water content, mixing method. The results show that the liquid limit slightly decreases from 69.9% to 68.3% at 0.2% SA and then gradually increases to 98.3% at 5% SA. At hydrated condition, the unconfined compressive strength (UCS) of SA treated clay at 0.5%, 1%, 2% and 3% concentrations is 2.57, 4.5, 7.1 and 5.48 times of untreated clay (15.7 kPa) at the same initial water content. In addition, the optimum biopolymer concentration, curing time, mixing method and initial water content can be regarded as 2%, 28 days, room temperature water-dry mixing (RD), 50%-55% to achieve the maximum unconfined compressive strength, which corresponds to the UCS increment of 593%, compared to the maximum UCS of untreated clay (780 kPa).

Debris Flow Mobility: A Comparison of Weathered Soils and Clay-rich Soils (풍화토와 점성토 위주의 토석류 거동과 유동특성)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.23-27
    • /
    • 2013
  • The risks of debris flows caused by climate change have increased significantly around the world. Recently, landslide disaster prevention technology is more focused on the failure and post-failure dynamics to mitigate the hazards in flow-prone area. In particular, we should define the soil strength and flow characteristics to estimate the debris flow mobility in the mountainous regions in Korea. To do so, we selected known ancient landslides area: Inje, Pohang and Sangju debris flows. Firstly we measured physical and mechanical properties: liquidity index and undrained shear strength by fall cone penetrometer. From the test results, we found that there is a possible relationship between liquidity index and undrained shear strength, $C_{ur}=(1.2/I_L)^{3.3}$, in the selected areas, even though they were different in geological compositions. Assuming that the yield stress is equal to the undrained shear strength at the initiation of sliding, we examined the flow characteristics of weathered soils in Korea. When liquidity index is given as 1, 1.5 and 3.0, the debris flow motion of weathered soils is compared with that of mud-rich sediments, which are known as low-activity clays. At $I_L=1$, it seems that debris flow could reach approximately 250m after 5 minutes. As liquidity index increased from 1 to 3, the debris flow propagation of weathered soils is twice than that of low-activity clays. It may be due to the fact that soil masses mixed with the ambient water and then highly fragmented during flow, thereby leading to the high mobility. The results may help to predict the debris flow propagation and to develop disaster prevention technology at similar geological settings, especially for the weathered soils, in Korea.

A Study on the Correlation with the Degree of Compaction and the Penetration Depth Using the Portable Penetration Meter at Field Test (휴대용 다짐도 측정기의 현장실험을 통한 다짐도와 관입깊이 상관성 연구)

  • Park, Geoun Hyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.11
    • /
    • pp.5-14
    • /
    • 2018
  • Worldwide, soil compaction work is one of the most important activities that are carried out on civil engineering works sites. Compaction work, particularly in the area of road construction, is considered to be important, as poor compaction work is closely related with poor construction even after a construction is complete. Currently, the plate bearing test or the sand cone method relative to the unit weight of soil test are commonly used to measure the degree of compaction, but as these require a great deal of time, equipment and manpower, it is difficult to secure economic efficiency. The method that is used to measure the degree of compaction according to the penetration depth achieved by free fall objects through gravity is the Free-Fall Penetration Test (FFPT), which uses a so-called "portable compaction measuring meter (PCMM)." In this study, the degree of compaction was measured and a penetration depth graph was developed after the field test using the portable compaction measuring meter. The coefficient of determination was 0.963 at a drop height of 10 cm, showing the highest level of accuracy. Both horizontal axis and longitudinal axis were developed in a decimal form of graph, and the range of allowable error was ${\pm}1.28mm$ based on the penetration depth. The portable compaction measuring meter makes it possible to measure the degree of compaction simply, quickly and accurately in the field, which will ensure economic efficiency and facilitate the process management.

Uniform large scale cohesionless soil sample preparation using mobile pluviator

  • Jamil, Irfan;Ahmad, Irshad;Ullah, Wali;Junaid, Muhammad;Khan, Shahid Ali
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.521-529
    • /
    • 2022
  • This research work deals with the development of air pluviation method for preparing uniform sand specimens for conducting large scale laboratory testing. Simulating real field conditions and to get reliable results, air pluviation method is highly desirable. This paper presents a special technique called air pluviation or sand raining technique for achieving uniform relative density. The apparatus is accompanied by a hopper, shutters with different orifice sizes and numbers and set of sieves. Before using this apparatus, calibration curves are drawn for relative density against different height of fall (H) and shutter sizes. From these calibration curves, corresponding to the desired relative density of 60%, the shutter size of 13mm and height of fall of 457.2 mm, are selected and maintained throughout the pluviation process. The density obtained from the mobile pluviator is then verified using the Dynamic Cone Penetrometer (DCP) test where the soil is poured in the box using defined shutter size and fall height. The results obtained from the DCP test are averaged as 60±0.5 which was desirable. The mobile pluviator used in this research is also capable of obtaining relative densities up to 90%. The instrument is validated using experimental and numerical approach. In numerical study, Plaxis 3D software is used in which the soil mass is defined by 10-Node tetrahedral elements and 6-Node plate is used to simulate plate behavior in the validation phase. The results obtained from numerical approach were compared with that of experimental one which showed very close correlation.

Effect of Sea Water and Microorganism on Liquid and Plastic Limits of Soils (해수와 미생물이 흙의 액소성한계에 미치는 영향)

  • Park, Sung-Sik;Nong, Zhenzhen;Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.79-88
    • /
    • 2012
  • Small amount of salt and various microorganisms are contained in natural soils or clays near the shore. In this study, most common clay minerals such as kaolinite and bentonite are used to evaluate the effect of salt and microorganism on liquid and plastic limits. The effect of time after mixing clays with water was also investigated for the consistency limits of clays. The test was conducted immediately, 1 day, or 7 days after mixing soils. For liquid limit tests two different test methods were used, the percussion cup method by Casagrande and the fall cone method. When sea water or microbial solution was used for mixing soils rather than distilled water, the liquid limit of kaolinite decreased by 6-15% and that of bentonite further decreased up to 37-53%. The liquid limit obtained from the fall cone method was approximately 10% for bentonite and 20% for kaolinite, which are higher than those from the percussion cup method. The effect of time on liquid and plastic limits was significant for those tested immediately or 1 day later but the values obtained after 1 day or 7 days did not vary a lot, regardless of soils, mixing waters or test methods.

The proposal on the new method for accurate to measure the plastic limits (정확한 소성한계 측정을 위한 새로운 실험법 제안)

  • Ko, Jae-Min;Lee, Byung-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.68-79
    • /
    • 2018
  • An examination of the characteristics of the ground material in is very important in a ground investigation. Casagrande classified soil using the material properties of soils. The liquid-plastic limit test is useful for obtaining basic information of soil, and is an effective method for classifying silt and clay, as well as the material properties, such as shear strength, shrinkage, and expansion. Unlike the liquid limit test, the plasticity limit test is due to the ambiguity of the test procedure. Many geotechnical engineers and scholars have questioned the test results. In this study, a new plasticity limit method was used to compare with the thread rolling method with kaolinite, ilite and bentonite at a certain ratio, and samples were collected from the west coast of Korea. As a result of the comparison, the test value of the new test method showed high reproducibility because the error range of the test value of the conventional thread rolling test was only 10% but the error range of the new test values decreased to 2%. The difference in the slope of the existing plasticity test values was 0.1519 ~ 0.1925, and the results of the test were similar or coincided with each other. Aone - point method was proposed to make it easier to apply the new test method.

A Study on Adaptive Design of Experiment for Sequential Free-fall Experiments in a Shock Tunnel (충격파 풍동에서의 연속적 자유낙하 실험에 대한 적응적 실험 계획법 적용 연구)

  • Choi, Uihwan;Lee, Juseong;Song, Hakyoon;Sung, Taehyun;Park, Gisu;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.798-805
    • /
    • 2018
  • This study introduces an adaptive design of experiment (DoE) approach for the hypersonic shock-tunnel testing. A series of experiments are conducted to model the pitch moment coefficient of a cone as the function of the angle of attack and the pitch rate. An algorithm to construct the trajectory of the test model from the images obtained by the high-speed camera is developed to effectively analyze multiple time series experimental data. An adaptive DoE procedure to determine the experimental point based on the analysis results of the past experiments using the algorithm is proposed.