• Title/Summary/Keyword: failure test

Search Result 5,060, Processing Time 0.023 seconds

기계류부품 신뢰성보증을 위한 2단계 시험방식 설계 (A Two-stage Reliability Demonstration Test for Mechanical Components)

  • 권영일
    • 품질경영학회지
    • /
    • 제34권1호
    • /
    • pp.20-26
    • /
    • 2006
  • In the fields of mechanical reliability application, "zero" or "zero or one" failure tests are most commonly used for demonstrating reliability of a product since they reduce test duration and/or sample size compared to other test methods that guarantees the same reliability of a product with a given confidence level or consumer's risk. The test duration of the "zero or one" failure test is longer than that of "zero" failure test but it has advantage of smaller producer's risk. In this paper a two-stage test is developed that compromises the "zero" and "zero or one" failure tests. The properties of the proposed two-stage test are investigated and the three test methods are compared using a numerical example.

가전 제품용 세라믹 히터의 수명 및 고장 원인에 대한 연구 (Study of Life Prediction and Failure Mechanisms of Cramic Heater for Home Appliance)

  • 최형석
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권4호
    • /
    • pp.355-361
    • /
    • 2017
  • Purpose: The purpose of this research is to establish the life test method for ceramic heater and identify the failure mechanisms. Methods: We do accelerated life test in the condition of thermal shock and failure analysis for failed samples. Conclusion: The main failure mechanisms of ceramic heater are identified as overstress failure mechanisms as results of failure analysis and the shape parameters of weibull distribution by accelerated life test are identified as 0.8, 1.2 and 0.4 each at $400^{\circ}C$, $600^{\circ}C$ and $900^{\circ}C$. At $900^{\circ}C$, the shape parameter 0.4 means that It is exactly initial failure caused that the stress exceeds the strength of ceramic heater highly and the shape parameters 0.8, 1.2 at $400^{\circ}C$, $600^{\circ}C$ means that the shape parameters are around 1.0 so that the main failure mechanism is overstress failure which is same result as failure analysis. It means that the appropriate life test method for ceramic heater is reliability qualification test method rather than accelerated life test.

유압시스템 구성품의 수명시험을 위한 무고장 시험시간의 산출 (Determination of No-Failure Test Times for the Life Test of Hydraulic System Components)

  • 이성래;김형의
    • 유공압시스템학회논문집
    • /
    • 제3권3호
    • /
    • pp.8-13
    • /
    • 2006
  • It is very important for the manufacturers to predict the life of hydraulic system components according to the results of life tests. Since it takes too much time to test the hydraulic system components until failure, the no-failure test method is applied for the life test of them. If the shape parameter of Weibull distribution, the number of samples, the confidence level, and the assurance life are given, the no-failure test times of hydraulic system components can be calculated by given equation. Here, the procedures to obtain the no-failure test times of the hydraulic system components such as hydraulic motors and pumps, hydraulic cylinders, hydraulic valves, hydraulic accumulators, hydraulic hoses, and hydraulic filters are described briefly.

  • PDF

가변 고장메카니즘을 가진 가속수명시험 데이타 분석방법 (An Analysis Method of Accelerated Life Test Data with a Change of Failure Mechanism)

  • 원영철;공명복
    • 대한산업공학회지
    • /
    • 제20권1호
    • /
    • pp.39-51
    • /
    • 1994
  • Almost all accelerated life tests assume that no basic failure mechanism changes within the test stresses. But accelerated life test, considering failure mechanism changes, is needed since failure mechanism changes when accelerating beyond the used stress. This paper studies the analysis when the failure mechanism changes within the test stresses. The piecewise linear regression, which the join point of two lines is estimated, is applied In particular, two accelerated life tests, with and without a change in failure mechanism are examined.

  • PDF

벌류트 펌프의 신뢰성 평가에 관한 연구 (Study for the Reliability Evaluation of a Volute Pump)

  • 정동수;이용범;강보식
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.23-29
    • /
    • 2018
  • The objective of this paper is to evaluate the reliability of a volute pump and presents test results through performance and life tests. The performance and life test methods were presented by analyzing the failure modes of the volute pump. Zero failure test time was calculated to evaluate the reliability of the volute pump and then, the test was performed under accelerated conditions. The test was also carried out to check the failure modes of the field conditions. This study can be provided to improve the product reliability through failure analysis of the volute pump. And failure cause of typical failure case has been investigated and improvement design has been presented. The performance test results of before and after the accelerated life test were presented to confirm the improved reliability of the volute pump.

The Video on Demand System Failure Evaluation of Software Development Step

  • Jang, Jin-Wook
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.107-112
    • /
    • 2019
  • Failure testing is a test that verifies that the system is operating in accordance with failure response requirements. A typical failure test approaches the operating system by identifying and testing system problems caused by unexpected errors during the operational phase. In this paper, we study how to evaluate these Failure at the software development stage. Evaluate the probability of failure due to code changes through the complexity and duplication of the code, and evaluate the probability of failure due to exceptional situations with bugs and test coverage extracted from static analysis. This paper studies the possibility of failure based on the code quality of software development stage.

실리콘 태양전지 모듈의 two-mode failure 모델의 연구 (A Study of Two-Mode Failure Model for Crystalline Si Photovoltaic Module)

  • 최기영;오원욱;강병준;김영도;탁성주;김동환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.62.2-62.2
    • /
    • 2011
  • To guarantee 20-25 years to the lifetime of the PV modules without failure, reliability test of the module is very important. Field-aged test of the outdoor environment is required. However, due to time constraints, accelerated testing is required to predict the lifetime of PV modules and find causes of failure. Failure is caused by many complex phenomena. In this study, we experimented two accelerated tests about corrosion and fatigue, respectively. First, temperature cycling test for fatigue were tested and Coffin-Manson equation was analyzed. Second, damp heat test for corrosion were tested and Eyring equation were analyzed. Finally, using two-mode failure model, we suggest a new lifetime model that analyze the phenomenon by combining two kinds of data.

  • PDF

유도탄 점검주기 설정을 위한 고장 탐지율 산출 방안 및 적용 사례 (A Method of Failure Detection Rate Calculation for Setting up of Guided Missile Periodic Test and Application Case)

  • 최인덕
    • 산업경영시스템학회지
    • /
    • 제42권2호
    • /
    • pp.28-35
    • /
    • 2019
  • Since guided missiles with the characteristics of the one-shot system remain stored throughout their entire life cycle, it is important to maintain their storage reliability until the launch. As part of maintaining storage reliability, period of preventive test is set up to perform preventive periodic test, in this case failure detection rate has a great effect on setting up period of preventive test to maintain storage reliability. The proposed method utilizes failure rate predicted by the software on the basis of MIL-HDBK-217F and failure mode analyzed through FMEA (Failure Mode and Effect Analysis) using data generated from the actual field. The failure detection rate of using the proposed method is applied to set periodic test of the actual guided missile. The proposed method in this paper has advantages in accuracy and objectivity because it utilizes a large amount of data generated in the actual field.

원전 배관 손상압력 평가를 위한 파열시험 및 유한요소해석 (Burst Test and Finite Element Analysis for Failure Pressure Evaluation of Nuclear Power Plant Pipes)

  • 윤민수;김성환;김태순
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.144-149
    • /
    • 2015
  • This study aims to quantitatively evaluate failure pressure of wall-thinned elbow under combined load along with internal pressure, by conducting real-scale burst test and finite element analysis together. For quantitative evaluation, failure pressure data was extracted from the real-scale burst test first, and then finite element analysis was carried out to compare with the test result. For the test, the wall-thinning defect of the extrados or intrados inside the center of 90-degree elbow was considered and the loading modes to open or close the specimen maintaining a certain load or displacement were applied. Internal pressure was applied until failure occurred. As a result, when the bending load was applied under the load control condition, the intrados of the defect was more affected by failure pressure than the extrados, and the opening mode was more vulnerable to failure pressure than the closing mode. When the bending load was applied under the displacement control, it was hardly affected by failure pressure though it was slightly different from the defect position. The result of the finite element analysis showed a similar aspect with the test. Moreover, when major factors such as material properties and pipeline thickness were calibrated to accurate values, the analytical results was more similar to the test results.

SHAFT 어셈블리 신뢰성 보증을 위한 가속시험의 설계 (Design of Accelerated Test for Reliability Assurance of SHAFT Assembly)

  • 김준홍;오근태;김명수
    • 산업경영시스템학회지
    • /
    • 제23권61호
    • /
    • pp.75-87
    • /
    • 2000
  • This paper proposes a procedure for designing an accelerated test using SMAT(Stress, (failure) Mechanism and Test) model describing the relation among stress, failure mode/mechanism and test method. In SMAT model the stresses to be applied are derived from the environmental factor analysis, the relative importance of those stresses can be estimated using AHP(Analytic Hierarchy Process) and failure mode/mechanism and test method are derived from the fields failure information and FMEA(Failure Mode and Effect Analysis). By applying the procedure we can make a selection of major factors to cause the failure of assembly and design the accelerated test using DOE(Design of Experiments) The procedure is illustrated with an qualification test case study of washing machine shaft assembly in "A" electric appliance company.

  • PDF