• 제목/요약/키워드: failure shape

검색결과 897건 처리시간 0.025초

가전 제품용 세라믹 히터의 수명 및 고장 원인에 대한 연구 (Study of Life Prediction and Failure Mechanisms of Cramic Heater for Home Appliance)

  • 최형석
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권4호
    • /
    • pp.355-361
    • /
    • 2017
  • Purpose: The purpose of this research is to establish the life test method for ceramic heater and identify the failure mechanisms. Methods: We do accelerated life test in the condition of thermal shock and failure analysis for failed samples. Conclusion: The main failure mechanisms of ceramic heater are identified as overstress failure mechanisms as results of failure analysis and the shape parameters of weibull distribution by accelerated life test are identified as 0.8, 1.2 and 0.4 each at $400^{\circ}C$, $600^{\circ}C$ and $900^{\circ}C$. At $900^{\circ}C$, the shape parameter 0.4 means that It is exactly initial failure caused that the stress exceeds the strength of ceramic heater highly and the shape parameters 0.8, 1.2 at $400^{\circ}C$, $600^{\circ}C$ means that the shape parameters are around 1.0 so that the main failure mechanism is overstress failure which is same result as failure analysis. It means that the appropriate life test method for ceramic heater is reliability qualification test method rather than accelerated life test.

Visualization analysis of the progressive failure mechanism of tunnel face in transparent clay

  • Lei, Huayang;Zhai, Saibei;Liu, Yingnan;Jia, Rui
    • Geomechanics and Engineering
    • /
    • 제29권2호
    • /
    • pp.193-205
    • /
    • 2022
  • The face stability of shield tunnelling is the most important control index for safety risk management. Based on the reliability of the transparent clay (TC) model test, a series of TC model tests under different buried depth were conducted to investigate the progressive failure mechanism of tunnel face. The support pressure was divided into the rapid descent stage, the slow descent stage and the basically stable stage with company of the local failure and integral failure in the internal of the soil during the failure process. The relationship between the support pressure and the soil movement characteristics of each failure stage was defined. The failure occurred from the soil in front of the tunnel face and propagated as the slip zone and the loose zone. The fitted formulas were proposed for the calculation of the failure process. The failure mode in clay was specified as the basin shape with an inverted trapezoid shape for shallow buried and appeared as the basin shape with a teardrop-like shape in deep case. The implications of these findings could help in the safety risk management of the underground construction.

파레토 및 어랑 형상모수에 의존한 수명분포를 따르는 소프트웨어 신뢰성 모형에 대한 신뢰도 특성요인 비교 연구 (A Comparison of Reliability Factors of Software Reliability Model Following Lifetime Distribution Dependent on Pareto and Erlang Shape Parameters)

  • 김희철;문송철
    • Journal of Information Technology Applications and Management
    • /
    • 제24권2호
    • /
    • pp.71-80
    • /
    • 2017
  • Software reliability is one of the most elementary and important problems in software development In order to find the software failure occurrence, the instantaneous failure rate function in the Poisson process can have a constant, incremental or decreasing tendency independently of the failure time. In this study, we compared the reliability performance of the software reliability model using the parameters of Pareto life distribution with the intensity decreasing pattern and the shape parameter of Erlang life distribution with the intensity increasing and decreasing pattern in the software product testing. In order to identify the software failure environment, the parametric estimation was applied to the maximum likelihood estimation method. Therefore, in this paper, we compare and evaluate software reliability by applying software failure time data. The reliability of the Erlang and Pareto life models is shown to be higher than that of the Pareto lifetime distribution model when the shape parameter is higher and the Erlang model is more reliable when the shape parameter is higher. Through this study, the software design department will be able to help the software design by applying various life distribution and shape parameters, and providing basic knowledge using software failure analysis.

유한고장 NHPP 어랑분포의 형상모수 변화에 따른 소프트웨어 신뢰성 모형의 속성 분석에 관한 연구 (A Study on the Property Analysis of Software Reliability Model with Shape Parameter Change of Finite Fault NHPP Erlang Distribution)

  • 민경일
    • Journal of Information Technology Applications and Management
    • /
    • 제25권4호
    • /
    • pp.115-122
    • /
    • 2018
  • Software reliability has the greatest impact on computer system reliability and software quality. For this software reliability analysis, In this study, we compare and analyze the trends of the properties affecting the reliability according to the shape parameters of Erlang distribution based on the finite fault NHPP. Software failure time data were used to analyze software failure phenomena, the maximum likelihood estimation method was used for parameter estimation. As a result, it can be seen that the intensity function is effective because it shows a tendency to decrease with time when the shape parameters a = 1 and a = 3. However, the pattern of the mean value function showed an underestimation pattern for the true values when the shape parameters a = 1 and a = 2, but it was found to be more efficient when a = 3 because the error width from the true value was small. Also, in the reliability evaluation of the future mission time, the stable and high trend was shown when the shape parameters a = 1 and a = 3, but on the contrary, when a = 2, the reliability decreased with the failure time. Through this study, the property of finite fault NHPP Erlang model according to the change of shape parameter without existing research case was newly analyzed, and new research information that software developers can use as basic guideline was presented.

어랑분포의 형상모수 변화에 따른 소프트웨어 개발 비용모형에 관한 비교 연구 (The Comparative Software Development Cost Model Considering the Change in the Shape Parameter of the Erlang Distribution)

  • 양태진
    • 한국정보전자통신기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.566-572
    • /
    • 2016
  • 소프트웨어 개발과정에서 소프트웨어 신뢰성은 매우 중요한 문제 중에 하나이다. 소프트웨어 고장현상을 분석하기 위하여 비동질적인 포아송과정에서 고장 발생 추이를 의미하는 위험함수가 고장시간에 독립적으로 일정하거나, 종속적인 경우, 즉 비-증가 또는, 비-감소하는 속성을 가질 수 있다. 본 연구에서는 소프트웨어 제품 테스팅 과정에서 고장 수명분포로서 어랑분포의 다양한 형상모수를 고려한 소프트웨어 개발 비용 분석에 대하여 연구되었다. 소프트웨어 고장현상을 분석하기 위하여 모수추정은 최우추정법이 사용되었다. 따라서 본 논문에서는 어랑분포의 형상모수를 고려한 소프트웨어 개발비용모형 분석을 위하여 소프트웨어 고장간격 시간자료를 이용하여 비교 및 평가하였다. 그 결과 형상모수에 따른 비용곡선을 비교 하였을 때 형상모형이 작을수록 비용이 많고 소프트웨어 최적 방출시간이 지연 됨을 알 수 있었다. 이 연구를 통하여 소프트웨어 개발자들에게 소프트웨어 형상모수에 따른 개발 비용을 탐색하는데, 기본적으로 도움을 줄 수 있는 사전정보의 역할을 할 수 있을 것으로 판단된다.

삼차원 적층복합재 구멍의 형상 최적화 (Shape Optimization of Three-Dimensional Cutouts in Laminated Composite Plates)

  • 한석영;마영준
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.275-280
    • /
    • 2004
  • Shape optimization was performed to obtain the precise shape of cutouts including the internal shape of cutouts in laminated composite plates by three dimensional modeling using solid element. The volume control of the growth-strain method was implemented and the distributed parameter chosen as Tsai-Hill fracture index for shape optimization. The volume control of the growth-strain method makes Tsai-Hill failure index at each element uniform in laminated composites under the initial volume. Then shapes optimized by Tsai-Hill failure index were compared with those of the initial shapes for the various load conditions and cutouts. The following conclusions were obtained in this study. (1) It was found that growth-strain method was applied efficiently to shape optimization of three dimensional cutouts in a laminate composite, (2) The optimal shapes of the various load conditions and cutouts were obtained, (3) The maximum Tsal-Hill failure index was reduced up to 67% when shape optimization was peformed under the initial volume by volume control of growth-strain method.

  • PDF

솔리드 요소를 이용한 적층복합재 구멍의 형상 최적화 (Shape Optimization of Three-Dimensional Cutouts in Laminated Composite Plates Using Solid Element)

  • 한석영;마영준
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.16-22
    • /
    • 2004
  • Shape optimization was performed to obtain the precise shape of cutouts including the internal shape of cutouts in laminated composite plates by three dimensional modeling using solid element. The volume control of the growth-strain method was implemented and the distributed parameter chosen as Tsai-Hill fracture index for shape optimization. The volume control of the growth-strain method makes Tsai-Hill failure index at each element uniform in laminated composites under the initial volume. Then shapes optimized by Tsai-Hill failure index were compared with those of the initial shapes for the various load conditions and cutouts. The following conclusions were obtained in this study (1) It was found that growth-strain method was applied efficiently to shape optimization of three dimensional cutouts in a laminated composite plate, (2) The optimal shapes on the various load conditions and cutouts were obtained, (3) The maximum Tsai-Hill failure index was reduced up to 67% when shape optimization was performed under the initial volume by volume control of growth-strain method.

체적제어에 의한 적층 복합재 구멍의 형상 최적화 (Shape Optimization of Cutouts in a Laminated Composite Plate Using Volume Control)

  • 한석영;마영준
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1337-1343
    • /
    • 2004
  • Shape optimization was performed to obtain a precise shape of cutouts including the internal shape of cutouts in a laminated composite plate by three dimensional modeling using solid element. Volume control of the growth-strain method was implemented and the distributed parameter chosen as Tsai-Hill fracture index for shape optimization. It makes Tsai-Hill failure index at each element uniform in laminated composites under the predetermined volume a designer requires. Shapes optimized by Tsai-Hill failure index were compared with those of the initial shapes for the various load conditions and cutouts. The following conclusions were obtained in this study; (1) It was found that growth-strain method was applied efficiently to shape optimization of three dimensional cutouts in a laminate composite, (2) The optimal shapes of the various load conditions and cutouts were obtained, (3) The maximum Tsai-Hill failure indices of the optimal shapes were remarkably reduced comparing with those of the initial shapes.

손상저감을 위한 접촉부형상의 고찰 (A Study on the Contact Shape for Failure Mitigation)

  • 김형규;윤경호;강흥석;송기남;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1068-1073
    • /
    • 2003
  • Method for contact failure mitigation is studied in this paper. The focus is laid on the contact shape that eventually influences the internal stresses. Contact mechanics is consulted within the frame of plane problem. Hertzian contact, rounded punch and uniform traction profiles are considered. Frictional as well as frictionless contact is also considered. As results, the higher traction profile induced by the rounded punch reveals the greatest among the considered shapes. Therefore, it is suggested to increase the edge radius as large as possible if a contact body of punch shape needs to be designed. It is also found that uniform traction cannot always provide the solution of contact failure mitigation.

  • PDF

외부부식의 형상이 파이프라인의 파손예측에 미치는 영향 (Effect of Shape of External Corrosion in Pipeline on Failure Prediction)

  • 이억섭;김호중
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.2096-2101
    • /
    • 1999
  • This paper presents the effect of shape of external corrosion in pipeline on failure prediction by using numerical simulation. The numerical study for the pipeline failure analysis is based on the FEM(Finite Element Method) with an elastic-plastic and large-deformation analysis. The predicted failure stress assessed for the simulated corrosion defects having different corroded shapes along the pipeline axis are compared with those by methods specified in ANSl/ASME B31G code and a modified B31G code.