• Title/Summary/Keyword: failure scenarios

Search Result 167, Processing Time 0.021 seconds

Simulation of the Migration of 3H and 14C Radionuclides on the 2nd Phase Facility at the Wolsong LILW Disposal Center

  • Ha, Jaechul;Son, Yuhwa;Cho, Chunhyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.439-455
    • /
    • 2020
  • Numerical model was developed that simulates radionuclide (3H and 14C) transport modeling at the 2nd phase facility at the Wolsong LILW Disposal Center. Four scenarios were simulated with different assumptions about the integrity of the components of the barrier system. For the design case, the multi-barrier system was shown to be effective in diverting infiltration water around the vaults containing radioactive waste. Nevertheless, the volatile radionuclide 14C migrates outside the containment system and through the unsaturated zone, driven by gas diffusion. 3H is largely contained within the vaults where it decays, with small amounts being flushed out in the liquid state. Various scenarios were examined in which the integrity of the cover barrier system or that of the concrete were compromised. In the absence of any engineered barriers, 3H is washed out to the water table within the first 20 years. The release of 14C by gas diffusion is suppressed if percolation fluxes through the facility are high after a cover failure. However, the high fluxes lead to advective transport of 14C dissolved in the liquid state. The concrete container is an effective barrier, with approximately the same effectiveness as the cover.

Dynamic Configuration and Operation of District Metered Areas in Water Distribution Networks

  • Bui, Xuan-Khoa;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.147-147
    • /
    • 2021
  • A partition of water distribution network (WDN) into district metered areas (DMAs) brings the efficiency and efficacy for water network operation and management (O&M), especially in monitoring pressure and leakage. Traditionally, the DMA configurations (i.e., number, shape, and size of DMAs) are permanent and cannot be changed occasionally. This leads to changes in water quality and reduced network redundancy lowering network resilience against abnormal conditions such as water demand variability and mechanical failures. This study proposes a framework to automatically divide a WDN into dynamic DMA configurations, in which the DMA layouts can self-adapt in response to abnormal scenarios. To that aim, a complex graph theory is adopted to sectorize a WDN into multiscale DMA layouts. Then, different failure-based scenarios are investigated on the existing DMA layouts. Here, an optimization-based model is proposed to convert existing DMA layouts into dynamic layouts by considering existing valves and possibly placing new valves. The objective is to minimize the alteration of flow paths (i.e., flow direction and velocity in the pipes) while preserving the hydraulic performance of the network. The proposed method is tested on a real complex WDN for demonstration and validation of the approach.

  • PDF

Feasibility and performance limitations of Supercritical carbon dioxide direct-cycle micro modular reactors in primary frequency control scenarios

  • Seongmin Son;Jeong Ik Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1254-1266
    • /
    • 2024
  • This study investigates the application of supercritical carbon dioxide (S-CO2) direct-cycle micro modular reactors (MMRs) in primary frequency control (PFC), which is a scenario characterized by significant load fluctuations that has received less attention compared to secondary load-following. Using a modified GAMMA + code and a deep neural network-based turbomachinery off-design model, the authors conducted an analysis to assess the behavior of the reactor core and fluid system under different PFC scenarios. The results indicate that the acceptable range for sudden relative electricity output (REO) fluctuations is approximately 20%p which aligns with the performance of combined-cycle gas turbines (CCGTs) and open-cycle gas turbines (OCGTs). In S-CO2 direct-cycle MMRs, the control of the core operates passively within the operational range by managing coolant density through inventory control. However, when PFC exceeds 35%p, system control failure is observed, suggesting the need for improved control strategies. These findings affirm the potential of S-CO2 direct-cycle MMRs in PFC operations, representing an advancement in the management of grid fluctuations while ensuring reliable and carbon-free power generation.

Flexible operation and maintenance optimization of aging cyber-physical energy systems by deep reinforcement learning

  • Zhaojun Hao;Francesco Di Maio;Enrico Zio
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1472-1479
    • /
    • 2024
  • Cyber-Physical Energy Systems (CPESs) integrate cyber and hardware components to ensure a reliable and safe physical power production and supply. Renewable Energy Sources (RESs) add uncertainty to energy demand that can be dealt with flexible operation (e.g., load-following) of CPES; at the same time, scenarios that could result in severe consequences due to both component stochastic failures and aging of the cyber system of CPES (commonly overlooked) must be accounted for Operation & Maintenance (O&M) planning. In this paper, we make use of Deep Reinforcement Learning (DRL) to search for the optimal O&M strategy that, not only considers the actual system hardware components health conditions and their Remaining Useful Life (RUL), but also the possible accident scenarios caused by the failures and the aging of the hardware and the cyber components, respectively. The novelty of the work lies in embedding the cyber aging model into the CPES model of production planning and failure process; this model is used to help the RL agent, trained with Proximal Policy Optimization (PPO) and Imitation Learning (IL), finding the proper rejuvenation timing for the cyber system accounting for the uncertainty of the cyber system aging process. An application is provided, with regards to the Advanced Lead-cooled Fast Reactor European Demonstrator (ALFRED).

ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

  • Jain, Vikas;Nayak, A.K.;Dhiman, M.;Kulkarni, P.P.;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.625-636
    • /
    • 2013
  • Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor 'AHWR' is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI), Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

FIRE PROPAGATION EQUATION FOR THE EXPLICIT IDENTIFICATION OF FIRE SCENARIOS IN A FIRE PSA

  • Lim, Ho-Gon;Han, Sang-Hoon;Moon, Joo-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.271-278
    • /
    • 2011
  • When performing fire PSA in a nuclear power plant, an event mapping method, using an internal event PSA model, is widely used to reduce the resources used by fire PSA model development. Feasible initiating events and component failure events due to fire are identified to transform the fault tree (FT) for an internal event PSA into one for a fire PSA using the event mapping method. A surrogate event or damage term method is used to condition the FT of the internal PSA. The surrogate event or the damage term plays the role of flagging whether the system/component in a fire compartment is damaged or not, depending on the fire being initiated from a specified compartment. These methods usually require explicit states of all compartments to be modeled in a fire area. Fire event scenarios, when using explicit identification, such as surrogate or damage terms, have two problems: (1) there is no consideration of multiple fire propagation beyond a single propagation to an adjacent compartment, and (2) there is no consideration of simultaneous fire propagations in which an initiating fire event is propagated to multiple paths simultaneously. The present paper suggests a fire propagation equation to identify all possible fire event scenarios for an explicitly treated fire event scenario in the fire PSA. Also, a method for separating fire events was developed to make all fire events a set of mutually exclusive events, which can facilitate arithmetic summation in fire risk quantification. A simple example is given to confirm the applicability of the present method for a $2{\times}3$ rectangular fire area. Also, a feasible asymptotic approach is discussed to reduce the computational burden for fire risk quantification.

A Study on the Relation between the Controllability of Service Failure and Recovery Satisfaction - Focused on Perceived Justice - (서비스 실패의 통제성과 회복 만족간의 관계 연구 -지각된 공정성을 중심으로-)

  • Yi, Soo-Won;Suh, In-Duk
    • Journal of Global Scholars of Marketing Science
    • /
    • v.8
    • /
    • pp.291-313
    • /
    • 2001
  • This study is about service failure and recovery. Prior studies of service failure and recovery encounters have been limited to descriptive research based primarily on retrospectiveti.e., memory-based) self-reports. This study uses a survey method and utilize a 2*2*2 experimental design with service recovery scenarios across two services. Manipulations included two levels of controllability, two levels of procedural justice and interactional justice, and two levels of distributive justice. Accordingly, this research examines how the controllability of service failure affect recovery satisfaction, and how these relations are moderated by the justice of service recovery. Conclusively, bi-dimension(outcome and process) constitutes the service recovery and this result supports the insistence that even dissatisfied customers can be satisfied through the service recovery efforts of the organization that once failed to meet the needs and expectation of customers.

  • PDF

The Effects of a Company's Response Type Strategy due to New Product Failure on Consumers' Negative WOMs : The Moderating Roles of both Cause-related Marketing Activity and Message Strategy (신제품 실패에 따른 기업의 대응유형전략이 소비자의 부정적 구전에 미치는 영향: 공익연계 마케팅 활동여부와 메시지전략의 조절역할)

  • Yun, Hui Kyung;Choi, Young Min;Bae, Sang Wook
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.2
    • /
    • pp.93-107
    • /
    • 2018
  • The Purpose of This Study is to Investigate Consumers' Negative WOMs due to the Crisis Response Strategy that Companies Perform in Crisis Situations due to the Failure of New Products. To do This, the Crisis Scenarios and Response Strategies were Manipulated Using a Virtual Laptop Company, and then an Experiment was Performed. The Results of This Experimental Design are as Follows. First, According to The Response Type Strategies, It is Found that Apologizing rather than Denying for the Crisis Response Mitigates the Negative WOMs more. Second, It is Found that the Companies that have Engaged in Cause-Related Marketing Activities before the Crisis Caused by New Product Failure Mitigate Consumers' Negative WOMs more than those which have not. Third, It is Shown that the Message Strategy of the Firm does not Affect Consumers' Negative WOMs. Fourth, the Interaction between the Response Type Strategy and the Cause-Related Marketing Activities are Found to Exist, but the Interaction Between The Response Type Strategy and the Message Strategy does not Appear.

Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes (COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구)

  • Jang, Chan-Hee;Kim, Hyun Na;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.643-659
    • /
    • 2022
  • Geologic sequestration technologies such as CCS (carbon capture and storage), EGS (enhanced geothermal systems), and EOR (enhanced oil recovery) have been widely implemented in recent years, prompting evaluation of the mechanical stability of storage sites. As fluid injection can stimulate mechanical instability in storage layers by perturbing the stress state and pore pressure, poroelastic models considering various injection scenarios are required. In this study, we calculate the pore pressure, stress distribution, and vertical displacement along a surface using commercial finite element software (COMSOL); fault slips are subsequently simulated using PyLith, an open-source finite element software. The displacement fields, are obtained from PyLith is transferred back to COMSOL to determine changes in coseismic stresses and surface displacements. Our sequential use of COMSOL-PyLith-COMSOL for poroelastic modeling of fluid-injection and induced-earthquakes reveals large variations of pore pressure, vertical displacement, and Coulomb failure stress change during injection periods. On the other hand, the residual stress diffuses into the remote field after injection stops. This flow pattern suggests the necessity of numerical modeling and long-term monitoring, even after injection has stopped. We found that the time at which the Coulomb failure stress reaches the critical point greatly varies with the hydraulic and poroelastic properties (e.g., permeability and Biot-Willis coefficient) of the fault and injection layer. We suggest that an understanding of the detailed physical properties of the surrounding layer is important in selecting the injection site. Our numerical results showing the surface displacement and deviatoric stress distribution with different amounts of fault slip highlight the need to test more variable fault slip scenarios.

Progressive Collapse Resistance of RC Frames under a Side Column Removal Scenario: The Mechanism Explained

  • Hou, Jian;Song, Li
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.237-247
    • /
    • 2016
  • Progressive collapse resistance of RC buildings can be analyzed by considering column loss scenarios. Using finite element analysis and a static test, the progressive collapse process of a RC frame under monotonic vertical displacement of a side column was investigated, simulating a column removal scenario. A single-story 1/3 scale RC frame that comprises two spans and two bays was tested and computed, and downward displacement of a side column was placed until failure. Our study offers insight into the failure modes and progressive collapse behavior of a RC frame. It has been noted that the damage of structural members (beams and slabs) occurs only in the bay where the removal side column is located. Greater catenary action and tensile membrane action are mobilized in the frame beams and slabs, respectively, at large deformations, but they mainly happen in the direction where the frame beams and slabs are laterally restrained. Based on the experimental and computational results, the mechanism of progressive collapse resistance of RC frames at different stages was discussed further. With large deformations, a simplified calculation method for catenary action and tensile membrane action is proposed.