• Title/Summary/Keyword: failure pressure

Search Result 1,655, Processing Time 0.029 seconds

Reliability Design Using FMEA for Pressure Control Regulator of Aircraft Fuel System (항공기용 연료계통 압력조절밸브의 FMEA를 적용한 신뢰성 설계)

  • Bae, Bo-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.24-28
    • /
    • 2009
  • The reliability assessment is performed for Pressure Control Regulator of Aircraft Fuel System using reliability procedure which consists of the reliability analysis and the Failure Modes and Effects Analysis(FMEA). The target reliability as MTBF(Mean Time Between Failure) is set to 5000hr. During the reliability analysis process, the system is categorized by Work Breakdown Structure(WBS) up to level 3, and a reliability structure is defined by schematics of the system. Since the components and parts that have been collected through EPRD/NPRD. The predicted reliability to meet mission requirements and operating conditions is estimated as 4375.9hr. To accomplish the target reliability, the components and parts with high RPN have been identified and changed by analyzing the potential failure modes and effects. By changing the configuration design of components and parts with high-risk, the design is satisfied target reliability.

  • PDF

Failure Analysis of Mn-Steel High Pressure Gas Cylinder (Mn 강재 고압용기의 파단 원인 분석)

  • Baik, Nam-Ik;Lee, Se-Jong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.283-294
    • /
    • 1998
  • This paper presents an investigation why Mn-steel high pressure gas cylinders have been failed in service. The fractured cylinders have been collected to identify the reason of the failure using various methods. The undamaged, new cylinder has also been tested for the base data. We examined the chemical compositions and fracture facets as well as the mechanical properties of the vessels. The microstructural observations of the fractured regions of the cylinder did not indicate the noticeable defects which might cause the failure. The experiments of cylinders on the compositinal and mechanical tests showed that the cylinder was in good shape according the standards of gas pressure vessel. The morphological analysis of the fracture surfaces concluded that the origin of the failure was the local weak segments induced by the external impact to the cylinder, which result in a sudden, fast fracture.

  • PDF

Failure Mechanism of Bendable Embedded Electronic Module Under Various Environment Conditions (Bendable 임베디드 전자모듈의 손상 메커니즘)

  • Jo, Yun-Seong;Kim, A Young;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.59-63
    • /
    • 2013
  • A bendable electronic module has been developed for a mobile application by using a low-cost roll-to-roll manufacturing process. In flexible embedded electronic module, a thin silicon chip was embedded in a polymer-based encapsulating adhesive between flexible copper clad polyimide layers. To confirm reliability and durability of prototype bendable module, the following tests were conducted: Moisture sensitivity level, thermal shock test, high temperature & high humidity storage test, and pressure cooker tester. Those experiments to induce failure of the module due to temperature variations and moisture are the experiment to verify the reliability. Failure criterion was 20% increase in bump resistance from the initial value. The mechanism of the increase of the bump resistance was analyzed by using non-destructive X-ray analysis and scanning acoustic microscopy. During the pressure cooker test (PCT), delamination occurred at the various interfaces of the bendable embedded modules. To investigate the failure mechanism, moisture diffusion analysis was conducted to the pressure cooker's test. The hygroscopic characteristics of the encapsulating polymeric materials were experimentally determined. Analysis results have shown moisture saturation process of flexible module under high temperature/high humidity and high atmosphere conditions. Based on these results, stress factor and failure mechanism/mode of bendable embedded electronic module were obtained.

A Study on the Bearing Capacity of Rammed Aggregate Pier as the Intermediate Foundations (중간기초개념으로서 짧은 쇄석다짐말뚝의 지지력 특성에 관한 연구)

  • CHUN BYUNG-SIK;KIM KYUNG-MIN;KIM JUN-HO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.247-252
    • /
    • 2004
  • To secure stability and availability of Rammed Aggregate Pier method as the foundation of a structure, the bearing capacity and failure behavior characteristics was studied through soil laboratory tests in a model ground. In this study, soil laboratory tests use carried out to find the applicability of RAP method as the foundation of a structure. And bearing capacity and the failure mechanism of RAP method was studied according to relative density($60\%,\;70\%,\;90\%$), diameter(45mm, 60mm, 70mm) of each pier ana depth(5cm, l0cm, 15cm, 20cm, 25cm, 30cm). Earth pressure cell is set up approach RAP and 1.0D space at RAP center. Bearing acpacity and the failure mechanism of RAP is investigated by load test As a result, bulging failure was happened in $5\~10cm\;(1.0D\~2.00)$ depth which the maximum lateral earth pressure is acting. Especially, diameter changing of RAP are in inverse proportion to the relative density and the lateral stress is very much influenced by the lateral earth pressure in every layer and tends to decrease according to depth.

  • PDF

Face stability analysis of rock tunnels under water table using Hoek-Brown failure criterion

  • Li, T.Z.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.235-245
    • /
    • 2019
  • This paper presents a novel methodology for face stability assessment of rock tunnels under water table by combining the kinematical approach of limit analysis and numerical simulation. The tunnels considered in this paper are excavated in fractured rock masses characterized by the Hoek-Brown failure criterion. In terms of natural rock deposition, a more convincing case of depth-dependent mi, GSI, D and ${\sigma}_c$ is taken into account by proposing the horizontally layered discretization technique, which enables us to generate the failure surface of tunnel face point by point. The vertical distance between any two adjacent points is fixed, which is beneficial to deal with stability problems involving depth-dependent rock parameters. The pore water pressure is numerically computed by means of 3D steady-state flow analyses. Accordingly, the pore water pressure for each discretized point on the failure surface is obtained by interpolation. The parametric analysis is performed to show the influence of depth-dependent parameters of $m_i$, GSI, D, ${\sigma}_c$ and the variation of water table elevation on tunnel face stability. Finally, several design charts for an undisturbed tunnel are presented for quick calculations of critical support pressures against face failure.

A discrete element simulation of a punch-through shear test to investigate the confining pressure effects on the shear behaviour of concrete cracks

  • Shemirani, Alireza Bagher;Sarfarazi, Vahab;Haeri, Hadi;Marji, Mohammad Fatehi;Hosseini, Seyed shahin
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.189-197
    • /
    • 2018
  • A discrete element approach is used to investigate the effects of confining stress on the shear behaviour of joint's bridge area. A punch-through shear test is used to model the concrete cracks under different shear and confining stresses. Assuming a plane strain condition, special rectangular models are prepared with dimension of $75mm{\times}100mm$. Within the specimen model and near its four corners, four equally spaced vertical notches of the same depths are provided so that the central portion of the model remains intact. The lengths of notches are 35 mm. and these models are sequentially subjected to different confining pressures ranging from 2.5 to 15 MPa. The axial load is applied to the punch through the central portion of the model. This testing and models show that the failure process is mostly governed by the confining pressure. The shear strengths of the specimens are related to the fracture pattern and failure mechanism of the discontinuities. The shear behaviour of discontinuities is related to the number of induced shear bands which are increased by increasing the confining pressure while the cracks propagation lengths are decreased. The failure stress and the crack initiation stress both are increased due to confining pressure increase. As a whole, the mechanisms of brittle shear failure changes to that of the progressive failure by increasing the confining pressure.

Criterion for Failure of Internally Wall Thinned Pipe Under a Combined Pressure and Bending Moment (내압과 굽힘의 복합하중에서 내부 감육배관의 손상기준)

  • Kim, Jin-Weon;Park, Chi-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.52-60
    • /
    • 2002
  • Failure criterion is a parameter to represent the resistance to failure of locally wall thinned pipe, and it depends on material characteristics, defect geometry, applied loading type, and failure mode. Therefore, accurate prediction of integrity of wall thinned pipe requires a failure criterion adequately reflected the characteristics of defect shape and loading in the piping system. In the present study, the finite element analysis was performed and the results were compared with those of pipe experiment to develop a sound criterion for failure of internally wall thinned pipe subjected to combined pressure and bending loads. By comparing the predictions of failure to actual failure load and displacement, an appropriate criterion was investigated. From this investigation, it is concluded that true ultimate stress criterion is the most accurate to predict failure of wall thinned pipe under combined loads, but it is not conservative under some conditions. Engineering ultimate stress estimates the failure load and displacement reasonably for al conditions, although the predictions are less accurate compared with the results predicted by true ultimate stress criterion.

Study on the Autofrettage Pressure for SCBA Type3 Cylinder (공기호흡기용 Type3 용기의 자긴압력과 수명에 관한 연구)

  • Kim, Kwang Seok;Lee, Kyomin;Lee, Jaehun;Cho, Seongmin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.53-56
    • /
    • 2016
  • In this study, experiments and finite element method analysis were used to determine the autofrettage pressure that is optimal and then maximizes the cycling life of Type3 composite cylinders used in self-contained breathing apparatus. For both approaches, the cylinders were pressurized at 100, 110, ${\ldots}$, 290 % of the test pressure, respectively. The stresses were computed by the FEM analysis; while the strains of cylinders were recorded and the failure modes were monitored during the cycling test. As a result, from the good agreements between the simulations and experiments, it was concluded that at least 70 % of the test pressure should be applied as the autofrettage pressure in order to takes visible effect on the cycling life, and 160 % of the test pressure induces the maximum cycling life and the desired failure mode.

Waterhammer Caused by Startup and Stoppage of a Centrifugal Pump (원심펌프의 시동 및 정지에 따른 수격현상)

  • Kim, Kyung-Yup;Kim, Joum-Bea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.1 s.22
    • /
    • pp.51-57
    • /
    • 2004
  • The waterhammer has recently become more important because the pumping stations were big and the systems conveying the fluid through the large and long transmission pipelines were complex. When the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity As the pressure waves are propagating between the pumping station and the distributing reservoir, the pressure inside the pipe drops to the liquid vapor pressure with the pipeline profile, at which time a vapor cavity forms, and finally the column separation occurs. If the pressure in the pipe is less than the atmospheric pressure, the pipe can be collapsed and destroyed after the water columns separated by the vapor cavity rejoin. During the reverse flow, the pressure is so abnormally increased at the pumping station that the accident of flooding may happen due to the failure of system. In this paper, the field tests on the waterhammer by the startup, stoppage, and power failure of a centrifugal pump were carried out for Yongma transmission pumping station in Seoul. The experimental results were compared with that of the numerical calculations, in which results the procedure of controlled pump normal shut-down and the two-step closing mode of controlling the ball valve for pump emergency stop are proposed to reduce the pressure surge.

Mechanical Ventilation of the Children (소아의 기계적 환기요법)

  • Park, June Dong
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.12
    • /
    • pp.1310-1316
    • /
    • 2005
  • Mechanical ventilation in children has some differences compared to in neonates or in adults. The indication of mechanical ventilation can be classified into two groups, hypercapnic respiratory failure and hypoxemic respiratory failure. The strategies of mechanical ventilation should be different in these two groups. In hypercapnic respiratory failure, volume target ventilation with constant flow is favorable and pressure target ventilation with constant pressure is preferred in hypoxemic respiratory failure. For oxygenation, fraction of inspired oxygen($FiO_2$) and mean airway pressure(MAP) can be adjusted. MAP is more important than FiO2. Positive end expiratory pressure(PEEP) is the most potent determinant of MAP. The optimal relationship of $FiO_2$ and PEEP is PEEP≒$FiO_2{\times}20$. For ventilation, minute volume of ventilation(MV) product of tidal volume(TV) and ventilation frequency is the most important factor. TV has an maximum value up to 15 mL/kg to avoid the volutrauma, so ventilation frequency is more important. The time constant(TC) in children is usually 0.15-0.2. Adequate inspiratory time is 3TC, and expiratory time should be more than 5TC. In some severe respiratory failure, to get 8TC for one cycle is impossible because of higher frequency. In such case, permissive hypercapnia can be considered. The strategy of mechanical ventilation should be adjusted gradually even in the same patient according to the status of the patient. Mechanical ventilators and ventilation modes are progressing with advances in engineering. But the most important thing in mechanical ventilation is profound understanding about the basic pulmonary mechanics and classic ventilation modes.