• Title/Summary/Keyword: failure parameters

Search Result 1,940, Processing Time 0.031 seconds

Fatigue life prediction based on Bayesian approach to incorporate field data into probability model

  • An, Dawn;Choi, Joo-Ho;Kim, Nam H.;Pattabhiraman, Sriram
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.427-442
    • /
    • 2011
  • In fatigue life design of mechanical components, uncertainties arising from materials and manufacturing processes should be taken into account for ensuring reliability. A common practice is to apply a safety factor in conjunction with a physics model for evaluating the lifecycle, which most likely relies on the designer's experience. Due to conservative design, predictions are often in disagreement with field observations, which makes it difficult to schedule maintenance. In this paper, the Bayesian technique, which incorporates the field failure data into prior knowledge, is used to obtain a more dependable prediction of fatigue life. The effects of prior knowledge, noise in data, and bias in measurements on the distribution of fatigue life are discussed in detail. By assuming a distribution type of fatigue life, its parameters are identified first, followed by estimating the distribution of fatigue life, which represents the degree of belief of the fatigue life conditional to the observed data. As more data are provided, the values will be updated to reduce the credible interval. The results can be used in various needs such as a risk analysis, reliability based design optimization, maintenance scheduling, or validation of reliability analysis codes. In order to obtain the posterior distribution, the Markov Chain Monte Carlo technique is employed, which is a modern statistical computational method which effectively draws the samples of the given distribution. Field data of turbine components are exploited to illustrate our approach, which counts as a regular inspection of the number of failed blades in a turbine disk.

Cardioprotective potential of Korean Red Ginseng extract on isoproterenol-induced cardiac injury in rats

  • Lim, Kyu Hee;Ko, Dukhwan;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.273-282
    • /
    • 2013
  • The present study was designed to investigate the cardioprotective effects of Korean Red Ginseng extract (KRG) on isoproterenol (ISO)-induced cardiac injury in rats, particularly in regards to electrocardiographic changes, hemodynamics, cardiac function, serum cardiac enzymes, components of the myocardial antioxidant defense system, as well as inflammatory markers and histopathological changes in heart tissue. ISO (150 mg/kg, subcutaneous, two doses administered at 24-hour intervals) treatment induced significant decreases in P waves and QRS complexes (p<0.01), as well as a significant increase in ST segments. Moreover, ISO-treated rats exhibited decreases in left-ventricular systolic pressure, maximal rate of developed left ventricular pressure ($+dP/dt_{max}$) and minimal rate of developed left ventricular pressure ($-dP/dt_{max}$), in addition to significant increases in lactate dehydrogenase, aspartate transaminase, alanine transaminase and creatine kinase activity. Heart rate, however, was not significantly altered. And the activities of superoxide dismutase, catalase and glutathione peroxidase were decreased, whereas the activity of malondialdehyde was increased in the ISO-treated group. ISO-treated group also showed increased caspase-3 level, release of inflammatory markers and neutrophil infiltration in heart tissue. KRG pretreatment (250 and 500 mg/kg, respectively) significantly ameliorated almost all of the parameters of heart failure and myocardial injury induced by ISO. The protective effect of KRG on ISO-induced cardiac injury was further confirmed by histopathological study. In this regard, ISO treatment induced fewer morphological changes in rats pretreated with 250 or 500 mg/kg of KRG. Compared with the control group, all indexes in rats administered KRG (500 mg/kg) alone were unaltered (p>0.05). Our results suggest that KRG significantly protects against cardiac injury and ISO-induced cardiac infarction by bolstering antioxidant action in myocardial tissue.

Axial Load Performance of Circular CFT Columns with Concrete Encasement (콘크리트피복 원형충전강관 기둥의 압축성능)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.525-536
    • /
    • 2015
  • An experimental study was performed to investigate the axial-flexural load-carrying capacity of concrete-encased and-filled steel tube (CEFT) columns. To restrain local buckling of longitudinal bars and to prevent premature failure of the thin concrete encasement, the use of U-cross ties was proposed. Five eccentrically loaded columns were tested by monotonic compression. The test parameters were axial-load eccentricity, spacing of ties, and the use of concrete encasement. Although early cracking occurred in the thin concrete encasement, the maximum axial loads of the CEFT specimens generally agreed with the strengths predicted considering the full contribution of the concrete encasement. Further, due to the effect of the circular steel tube, the CEFT columns exhibited significant ductility. The applicability of current design codes to the CEFT columns was evaluated in terms of axial-flexural strength and flexural stiffness.

Evaluation of Shear Capacity According to Transverse Spacing of Wide Beam Shear Reinforced with Steel Plate with Openings (유공형 강판으로 전단보강된 넓은 보에서의 횡방향 보강 간격에 따른 전단성능 평가)

  • Choi, Jin Woong;Kim, Min Sook;Choi, Bong-Seob;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.259-266
    • /
    • 2015
  • In this paper, transverse shear spacing and effective depth of wide beams were considered as parameters to evaluate the shear capacity of wide beam according to transverse spacing of steel plates with openings in experimental way. The eight specimens were composed of: five specimens of shear reinforced by steel plates with openings and three non-reinforced specimens. Crack, failure mode, strain and load-displacement curve of specimens were analysed. Shear contribution of shear reinforcement is evaluated and maximum transverse spacing of shear reinforcement was proposed. Shear strength of the specimen that reinforced with three stirrup legs was higher than shear strength of the specimen that reinforced with two stirrup legs. And as the effective depth increased, shear strength was increased.

Evaluation of Shear Strength for Wide Beam using GFRP Plate Shear Reinforcement (GFRP 판을 전단보강재로 사용한 넓은 보의 전단성능 평가)

  • Jo, Eunsun;Choi, Jin Woong;Kim, Min Sook;Kim, Heecheul;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • In this paper, an experimental evaluation of shear strength of wide beam is presented. By the experiment in paper, shear strength depending on parameter of shear reinforcement by GFRP plate on wide beam is investigated. Specimens are 7 of reinforced by GFRP plate with openings. The shear reinforcement is manufactured into plate shape with openings to ensure perfect integration with concrete. The test was performed on 7 specimens. The parameters are including number of shear reinforcement by GFRP plates and center-to-center spacing between vertical strip. We analysed the crack, failure mode, strain, shear strength of specimens. A calculation of the shear strength of reinforced wide beam with GFRP plate based on ACI 318-11. The result of the experiment shows that the GFRP plate is works successfully as shear reinforcement in the wide beam.

Elastic Local Buckling Analysis of Orthotropic Structural Shapes Using Bleich's Approximate Method (Bleich의 근사해법을 이용한 직교이방성 구조용부재의 탄성국부좌굴해석)

  • Lee, Won Bok;Yoon, Soon Jong;Lee, Seok Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.795-805
    • /
    • 1994
  • This paper presents the analytical results for the prediction of elastical local buckling stress of fiber reinforced plastic (orthotropic) structural shapes manufactured from pultrusion process. In the derivation, existing Bleich's approach which was originally derived for the isotropic structural shapes was extended and non-dimensionalized parameters which can simplify the numerical calculations were adopted. Analytical results were compared with reported closed-form solutions and experimental results. It is graphically shown that the results can be used effectively to predict the local buckling stress of pultruded fiber reinforced plastic structural shapes. Numerical results were presented graphically to estimate the local buckling stress of various cross-sectional dimensions and lengths of columns. In addition, limits of width to thickness ratio of flange and web of pultruded structural shapes were suggested in which material failure or overall buckling occurs prior to local buckling.

  • PDF

Seismic-resistant slim-floor beam-to-column joints: experimental and numerical investigations

  • Don, Rafaela;Ciutina, Adrian;Vulcu, Cristian;Stratan, Aurel
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.307-321
    • /
    • 2020
  • The slim-floor solution provides an efficient alternative to the classic slab-over-beam configuration due to architectural and structural benefits. Two deficiencies can be identified in the current state-of-art: (i) the technique is limited to nonseismic applications and (ii) the lack of information on moment-resisting slim-floor beam-to-column joints. In the seismic design of framed structures, continuous beam-to-column joints are required for plastic hinges to form at the ends of the beams. The present paper proposes a slim-floor technical solution capable of expanding the current application of slim-floor joints to seismic-resistant composite construction. The proposed solution relies on a moment-resisting connection with a thick end-plate and large-diameter bolts, which are used to fulfill the required strength and stiffness characteristics of continuous connections, while maintaining a reduced height of the configuration. Considering the proposed novel solution and the variety of parameters that could affect the behavior of the joint, experimental and numerical validations are compulsory. Consequently, the current paper presents the experimental and numerical investigation of two slim-floor beam-to-column joint assemblies. The results are discussed in terms of moment-rotation curves, available rotational capacity and failure modes. The study focuses on developing reliable slim-floor beam joints that are applicable to steel building frame structures located in seismic regions.

Dynamic Response of Unreinforced Masonry Building (비보강 조적조의 동적 거동)

  • Kim, Nam-Hee;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.1-14
    • /
    • 2004
  • The seismic behavior of a 1/3-scale model of a two-story unreinforced masonry (URM) structure typically used in constructing low-rise residential buildings in Korea is studied through a shaking table test. The purposes of this study are to investigate seismic behavior and damage patterns of the URM structure that was not engineered against seismic loading and to provide its experimental test results. The test structure was symmetric about the transverse axis but asymmetric to some degrees about longitudinal axis and had a relatively strong diaphragm of concrete slab. The test structure was subjected to a series of differentlevels of earthquake shakings that were applied along the longitudinal direction. The measured dynamic response of the test structure was analyzed in terms of various global parameters (i.e., floor accelerations, base shear, floor displacements and storydrift, and torsional displacements) and correlated with the input table motion. Moreover, different levels of seismic performance were suggested for performance-based design approach. The results of the shaking table test revealed that the shear failure was dominant on a weak side of the 1stfloor while the upper part of the test model remained as a rigid body. Also, it was found that substantial strength and deformation capacity existed after cracking.

A Study on the Stability of Cantilever Retaining Wall with a Short Heel (뒷굽이 짧은 캔틸레버 옹벽의 안정성에 관한 연구)

  • Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.17-28
    • /
    • 2018
  • Important parameters for the stability checks of cantilever wall are the active earth pressure and the weight of soil above the heel of the base slab. If the heel length is so long enough that the shear zone bounded by the failure plane is not obstructed by the stem of the wall, the Rankine active condition is assumed to exist along the vertical plane which is located at the edge of the heel of the base slab. Then the Rankine active earth pressure equations may be theoretically used to calculate the lateral pressure on the vertical plane. However, in case of the cantilever wall with a short heel, the application of Rankine theory is not only theoretically incorrect but also makes the lateral earth pressure larger than the actual pressure and results in uneconomical design. In this study, for the cantilever wall with a short heel the limit analysis method is used to investigate the mechanism of development of the active earth pressure and then the magnitude and location of the resultants of the pressure and the weight of the soil above the heel are determined. The calculated results are compared with the existing methods for the stability check. In case of the cantilever wall with a short heel, the results by the Mohr circle method and Teng's method show max. 3.7% and 32% larger than those of the limit analysis method respectively.

Effect of Specimen Sizes and Shapes on Compressive Strength of Concrete (콘크리트의 압축강도에 공시체의 크기와 형상이 미치는 영향)

  • Yang Eun-Ik;Choi Joong-Cheol;Yi Seong-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.375-382
    • /
    • 2004
  • The compressive strength of concrete is used as the most basic and important material Property when reinforced concrete structures are designed. It has become a problem to use this value, however, because the control specimen sizes and shapes are different from every country. In this study, the effect of specimen sizes and shapes on compressive strength of concrete specimens was experimentally investigated based on fracture mechanics. Experiments for the Mode I failure was carried out by using cylinder, cube, and prism specimens. The test results are curve fitted using least square method(LSM) to obtain the new parameters for the modified size effect law(MSEL). The analysis results show that the effect of specimen sizes and shapes on ultimate strength is apparent. In addition, correlations between compressive strengths with size, shape, and casting direction of the specimen are investigated. For cubes and prisms the effect of placing direction on the compressive strength was investigated.