• Title/Summary/Keyword: failure parameters

Search Result 1,940, Processing Time 0.029 seconds

다단계 최적화 기법을 이용한 치과용 골내 임플란트의 형상 최적 설계 (Optimum Design of Endosseous Implant in Dentistry by Multilevel Optimization Method)

  • 한중석;서기열;최주호
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.144-151
    • /
    • 2003
  • In this paper, an optimum design problem for endosseous implant in dentistry is studied to find best implant design. An optimum design problem is formulated to reduce stresses arising at the cortical as well as cancellous bones, in which sufficient design parameters are chosen fur design definition that encompasses major implants in popular use. Optimization at once (OAO) with the large number of design variables, however, causes too costly solution or even failure to converge. A concept of multilevel optimization (MLO) is employed to this end, which is to group the design variables of similar nature, solve the sub-problem of smaller size fur each group in sequence, and this is iterated until convergence. Each sub-problem is solved based on the response surface method (RSM) due to its efficiency for small sized problem. Favorable solution is obtained by the MLO, which is compared to both solutions made by RSM and sequential quadratic programming (SQP) in the OAO problem.

회전 핀의 종동 하중에 따른 박판 스프링의 대변형에 대한 연구 (A Study on the Large Deflection of Flat Spring Subjected to Follower Load by a Rotating Pin)

  • 정일섭
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1352-1358
    • /
    • 2004
  • The mechanical spring is one of widely used machine elements. Among various kinds, flat-type spring loaded by a rotating pin was studied. A flat spring was simplified to a cantilever beam, and numerical analysis was attempted. Since the loading pin rotates about a separate axis from the fixed spring or vice versa, the location, direction, and magnitude of the contact force including normal contact and friction loads vary accordingly. Meanwhile, the spring is deformed substantially as the relative motion progresses. Therefore, this problem needs to be formulated taking the follower loading characteristics and geometrical non-linearity into account. Derived nonlinear differential equation was solved to yield the spring deflection, contact force and the torque to rotate the pin, and the result was compared with a finite element solution. Also, the influences of principal design parameters were studied. The proposed methodology is expected to be useful for the design of pin-loaded flat spring and the prevention of mechanical failures in the form of yielding or fatigue failure of spring or severe wear of the components.

라비니오 유성기어의 신뢰성 및 수명에 관한 연구 (A Study on the Reliability and Life of the Ravigneaux Planetry Gear Train)

  • Kim, T.H.;Kim, H.S.;Yang, S.M.
    • 한국정밀공학회지
    • /
    • 제13권10호
    • /
    • pp.36-45
    • /
    • 1996
  • The precise estimation of the reliability and life of the Ravigneaux planetary gear train used in an automatic transmission is necessary in order to enable accurate material and geometric properties to reliability distrobution and the number of load cycles at failure. These are critical for the proba- bilistic design of complex planetary gear system as Ravigneaux type particularly during various gear ratios. The Ravigneaux planetary gear train has five gears, such as a forward and a reverse sun gear, a short and a long pinion, and an annulus gear. In this paper, the Ravigneaux gear system is analyzed to figure out the reliablity distribution. i.e. the probability of survival in the system without its overhaul. First, the reliablity method based on the Weibull distribution is used in conjuction with the Palmgren's model to predict both the individual reliabilities of its components and the nimber of load cycles when the system failed. Then using the presented method, the life of the Ravigneaux gear system can be determined. Alwo the different design parameters such as tooth face width, material property, and Weibull exponent are applied and reached to optimal ones. Thus, the precise evaluation of the reliability and life of the Ravigneaux planetary gear train used in an automatic transmission can be effectively carried out.

  • PDF

Shape Study of Wear Debris in Oil-Lubricated System with Neural Network

  • Park, Heung-Sik;Seo, Young-Baek;Cho, Yon-Sang
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.65-70
    • /
    • 2001
  • The wear debris is fall off the moving surfaces in oil-lubricated systems and its morphology is directly related to the damage and failure to the interacting surfaces. The morphology of the wear particles are therefore directly indicative of wear processes occurring in tribological system. The computer image processing and artificial neural network was applied to shape study and identify wear debris generated from the lubricated moving system. In order to describe the characteristics of various wear particles, four representative parameter (50% volumetric diameter, aspect, roundness and reflectivity) from computer image analysis for groups of randomly sampled wear particles, are used as inputs to the network and learned the friction condition of five values (material 3, applied load 1, sliding distance 1). It is shown that identification results depend on the ranges of these shape parameters learned. The three kinds of the wear debris had a different pattern characteristics and recognized the friction condition and materials very well by neural network. We discuss how these approach can be applied to condition diagnosis of the oil-lubricated tribological system.

  • PDF

텐던 구동 시스템의 마찰 모델 파라미터 추정 (Parameter Estimation of a Friction Model for a Tendon-sheath Mechanism)

  • 정해성;이정준;김남욱
    • 로봇학회논문지
    • /
    • 제15권2호
    • /
    • pp.190-196
    • /
    • 2020
  • Mechanical systems using tendon-driven actuators have been widely used for bionic robot arms because not only the tendon based actuating system enables the design of robot arm to be very efficient, but also the system is very similar to the mechanism of the human body's operation. The tendon-driven actuator, however, has a drawback caused by the friction force of the sheath. Controlling the system without considering the friction force between the sheath and the tendon could result in a failure to achieve the desired dynamic behaviors. In this study, a mathematical model was introduced to determine the friction force that is changed according to the geometrical pathway of the tendon-sheath, and the model parameters for the friction model were estimated by analyzing the data obtained from dedicated tests designed for evaluating the friction forces. Based on the results, it is possible to appropriately predict the friction force by using the information on the pathway of the tendon.

Nonlinear finite element analysis of RC beams strengthened with CFRP strip against shear

  • Bulut, Nalan;Anil, Ozgur;Belgin, Cagatay M.
    • Computers and Concrete
    • /
    • 제8권6호
    • /
    • pp.717-733
    • /
    • 2011
  • Strengthening of reinforced concrete (RC) members against shear that is one of the failure modes especially avoided by using carbon fiber reinforced polymer (CFRP) is widely used technique, which is studied at many experimental studies. However, conducting experimental studies are required more financial resources and laboratory facilities. In addition, along with financial resources, more time is needed in order to carry out comprehensive experimental studies. For these reasons, a verified finite element model that is tested with previous experimental studies can be used for reaching generalized results and investigating parameters that are not studied. For this purpose, previous experimental study results are used and "T" cross-sectioned RC beams strengthened with CFRP strips with insufficient shear strength are modeled by using ANSYS software. First, finite elements modeling of the previously tested RC beams are done, and then the computed results are compared with the experimental ones whether they are matched or not. As a result, the finite element model is verified. Later, analyses of the cases without any test results are done by using the verified model. Optimum CFRP strip spacing is determined with this verified finite element model, and compared with the experimental findings.

Computational material modeling of masonry walls strengthened with fiber reinforced polymers

  • Koksal, H. Orhun;Jafarov, Oktay;Doran, Bilge;Aktan, Selen;Karakoc, Cengiz
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.737-755
    • /
    • 2013
  • This paper aims to develop a practical approach to modeling of fiber reinforced polymers (FRP) strengthened masonry panels. The main objective is to provide suitable relations for the material characterization of the masonry constituents so that the finite element applications of elasto-plastic theory achieves a close fit to the experimental load-displacement diagrams of the walls subjected to in-plane shear and compression. Two relations proposed for masonry columns confined with FRP are adjusted for the cohesion and the internal friction angle of both units and mortar. Relating the mechanical parameters to the uniaxial compression strength and the hydrostatic pressure acting over the wall surface, the effects of major and intermediate principal stresses ${\sigma}_1$ and ${\sigma}_2$ on the yielding and the shape of the deviatoric section are then reflected into the analyses. Performing nonlinear finite element analyses (NLFEA) for the three walls tested in two different studies, their stress-strain response and failure modes are eventually evaluated through the comparisons with the experimental behavior.

Solution for a circular tunnel in strain-softening rock with seepage forces

  • Wei, Luo;Zo, Jin-feng;An, Wei
    • Geomechanics and Engineering
    • /
    • 제22권6호
    • /
    • pp.553-564
    • /
    • 2020
  • In this study, a simple numerical approach for a circular tunnel opening in strain-softening surrounding rock is proposed considering out-of-plane stress and seepage force based on Biot's effective stress principle. The plastic region of strain-softening surrounding rock was divided into a finite number of concentric rings, of which the thickness was determined by the internal equilibrium equation. The increments of stress and strain for each ring, starting from the elastic-plastic interface, were obtained by successively incorporating the effect of out-of-plane stress and Biot's effective stress principle. The initial value of the outmost ring was determined using equilibrium and compatibility equations. Based on the Mohr-Coulomb (M-C) and generalized Hoek-Brown (H-B) failure criteria, the stress-increment approach for solving stress, displacement, and plastic radius was improved by considering the effects of Biot's effective stress principle and the nonlinear degradation of strength and deformation parameters in plastic zone incorporating out-of-plane stress. The correctness of the proposed approach is validated by numerical simulation.

Necessity of step-stress accelerated life testing experiment at higher steps

  • Chandra, N.;Khan, Mashroor Ahmad;Pandey, M.
    • International Journal of Reliability and Applications
    • /
    • 제15권2호
    • /
    • pp.85-98
    • /
    • 2014
  • Accelerated life testing (ALT) is a well famous technique in life testing and reliability studies, this is particularly used to induce so high stress leading to failure of the highly reliable units quickly under stipulated duration of time. The step-stress ALT is one of the systematic experimental strategy of ALT applied to fail the units in steps. In this article we focus on two important issues (i) necessity of life tests at higher steps with relevant causes (ii) to develop a new optimum test plan for 3-step SSALT under the modified cumulative exposure model proposed by Khamis and Higgins (1998). It is assumed that the lifetime of test units follows Rayleigh distribution and its scale parameter at constant stress level is assumed to be a log-linear function of the stress. The maximum likelihood estimates of the parameters involved in the step-stress ALT model are obtained. A simulation study is performed for numerical investigation of the proposed new optimum plan 3-step, step-stress ALT. The necessity of the life test units at 3-step step-stress is also numerically examined in comparison to simple step-stress setup.

  • PDF

Optimal pre-conditioning and support designs of floor heave in deep roadways

  • Wang, Chunlai;Li, Guangyong;Gao, Ansen;Shi, Feng;Lu, Zhijiang;Lu, Hui
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.429-437
    • /
    • 2018
  • In order to reduce deformation of roadway floor heave in deep underground soft rockmass, four support design patterns were analyzed using the Fast Lagrangian Analysis of Continua (FLAC)3D, including the traditional bolting (Design 1), the bolting with the backbreak in floor (Design 2), the full anchorage bolting with the backbreak in floor (Design 3) and the full anchorage bolting with the bolt-grouting backbreak in floor (Design 4). Results show that the design pattern 4, the full anchorage bolting with the bolt-grouting backbreak in floor, was the best one to reduce the deformation and failure of the roadway, the floor deformation was reduced at 88.38% than the design 1, and these parameters, maximum vertical stress, maximum horizontal displacement and maximum horizontal stress, were greater than 1.69%, 5.96% and 9.97%. However, it was perfectly acceptable with the floor heave results. The optimized design pattern 4 provided a meaningful and reliable support for the roadway in deep underground coal mine.