Browse > Article
http://dx.doi.org/10.12989/sem.2013.48.5.737

Computational material modeling of masonry walls strengthened with fiber reinforced polymers  

Koksal, H. Orhun (Department of Civil Engineering, Canakkale 18 Mart University)
Jafarov, Oktay (Khazar University, Neftchilar Campus)
Doran, Bilge (Department of Civil Engineering, Yildiz Technical University)
Aktan, Selen (Department of Civil Engineering, Canakkale 18 Mart University)
Karakoc, Cengiz (Department of Civil Engineering, Bogazici University)
Publication Information
Structural Engineering and Mechanics / v.48, no.5, 2013 , pp. 737-755 More about this Journal
Abstract
This paper aims to develop a practical approach to modeling of fiber reinforced polymers (FRP) strengthened masonry panels. The main objective is to provide suitable relations for the material characterization of the masonry constituents so that the finite element applications of elasto-plastic theory achieves a close fit to the experimental load-displacement diagrams of the walls subjected to in-plane shear and compression. Two relations proposed for masonry columns confined with FRP are adjusted for the cohesion and the internal friction angle of both units and mortar. Relating the mechanical parameters to the uniaxial compression strength and the hydrostatic pressure acting over the wall surface, the effects of major and intermediate principal stresses ${\sigma}_1$ and ${\sigma}_2$ on the yielding and the shape of the deviatoric section are then reflected into the analyses. Performing nonlinear finite element analyses (NLFEA) for the three walls tested in two different studies, their stress-strain response and failure modes are eventually evaluated through the comparisons with the experimental behavior.
Keywords
masonry wall; fiber reinforced polymer; cohesion; internal friction; elasto-plastic analysis; finite element;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Berto, L., Saetta, A., Scotta, R. and Vitaliani, R. (2002), "An orthotropic damage model for masonry structures", Int. J. Numer. Meth. Eng., 55(2), 127-157.   DOI   ScienceOn
2 Brasile, S., Casciaro, R. and Formica, G. (2010), "Finite element formulation for nonlinear analysis of masonry walls", Comput. Struct., 88(3-4), 135-143.   DOI   ScienceOn
3 Capozucca, R. (2011), "Experimental analysis of historic masonry walls reinforced by CFRP under in- plane cyclic loading", Compos. Struct., 94(1), 277-289.   DOI   ScienceOn
4 Chaimoon, K. and Attard, M.M. (2007), "Modeling of unreinforced masonry walls under shear and compression", Eng. Struct., 29(9), 2056-2068.   DOI   ScienceOn
5 Cheema, T.S. and Klingner, R.E. (1986), "Compressive strength of concrete masonry prisms", J. Am. Concrete Ins., 83(1), 88-97.
6 Chen, W.F. and Lui, E.M. (1987), Structural Stability: Theory and Implementation, Elsevier, New York.
7 Chen, W.F. and Han, D.J. (1988), Plasticity for Structural Engineers, Springer-Verlag, New York.
8 DeBuhan, P. and DeFelice, G. (1997), "A homogenization approach to the ultimate strength of brick masonry", J. Mech. Phy. Solid., 45(7), 1085-1104.   DOI   ScienceOn
9 Dhanasekar, M., Page, A.W. and Kleeman, P.W. (1984), "A finite element model for the in-plane behavior of brick masonry", Proc. 9th Australasian Conference on Mechanisms of Structures, 262-267.
10 Doran, B., Köksal, H.O. and Turgay, T. (2009), "Nonlinear finite element modeling of rectangular/square concrete columns confined with FRP", Mater. Des., 30(8), 3066-3075.   DOI   ScienceOn
11 Formica, G., Sansalone, V. and Casciaro, R. (2002), "A mixed solution strategy for the nonlinear analysis of brick masonry walls", Comput. Meth. Appl. Mech. Eng., 191(51-52), 5847-5876.   DOI   ScienceOn
12 Ganesan, T. and Ramamurthy, K. (1992), "Behavior of concrete hollow-block masonry prisms under axial-compression", J. Struct. Eng., 118(7), 1751-1769.   DOI
13 Ganz, H.R. and Thurlimann, B. (1983), "Strength of brick walls under normal force and shear", Proc. 8th Int. Symp. On Load Bearing Brickwork, London, U.K.
14 Giambanco, G., Rizzo, S. and Spallino, R. (2001), "Numerical analysis of masonry structures via interface models", Comput. Meth. Appl. Mech. Eng., 190(49-50), 6493-6511.   DOI   ScienceOn
15 Grande, E., Milani, G. and Sacco, E. (2008), "Modelling and analysis of FRP-strengthened masonry panels", Eng. Struct., 30(7), 1842-1860.   DOI   ScienceOn
16 Kaushik, H.B., Rai, D.C. and Jain, S.K. (2007), "Stress-strain characteristics of clay brick masonry under uniaxial compression", J. Mater. Civil Eng., 19(9), 728-739.   DOI   ScienceOn
17 Haach, V.G., Vasconcelos, G. and Lourenco, P.B. (2010), "Influence of the geometry of units and filling of vertical joints in the compressive and tensile strength of masonry", Mater. Sci. Forum, Special Issue, 636-637, 1321-1328.
18 Hamid, A.A. and Chukwunenye, A.O. (1986), "Compression behavior of concrete masonry prisms", J. Struct. Eng., 112(3), 605-613.   DOI   ScienceOn
19 Jafarov, O. (2012), "Lifli polimerle guclendirilmis yigma duvarların modellenmesi", Ph.D. Thesis, Civil Engineering, Yildiz Technical University, Istanbul.
20 Khalil, M.R.A., Shrive, N.G. and Ameny, P. (1987), "3 dimensional stress-distribution in concrete masonry prisms and walls", Mag. Concrete Res., 39(139), 73-82.   DOI   ScienceOn
21 Koksal, H.O. and Karakoç, C. (1999), "An isotropic damage model for concrete", Mater. Struct., 32(222), 611-617.   DOI
22 Köksal, H.O., Doran, B., Ozsoy, A.E. and Alacalı, S.N. (2004), "Nonlinear modeling of concentrically loaded reinforced blockwork masonry columns", Can. J. Civil Eng., 31(6), 1012-1023.   DOI   ScienceOn
23 Köksal, H.O. and Arslan, G. (2004) "Damage analysis of RC beams without web reinforcement", Mag. Concrete Res., 56(4), 231-241.   DOI   ScienceOn
24 Köksal, H.O., Karakoç, C. and Yıldırım, H. (2005), "Compression behavior and failure mechanisms of concrete masonry prisms", J. Mater. Civil Eng., 17(1), 107-115.   DOI   ScienceOn
25 Köksal, H.O. (2006), "A failure criterion for RC members under triaxial compression", Struct. Eng. Mech., 24(2), 137-154.   DOI   ScienceOn
26 La Mendola, L., Failla, A., Cucchiara, C. and Accardi, M. (2009), "Debonding phenomena in CFRP strengthened calcarenite masonry walls and vaults", Adv. Struct. Eng., 12(5), 745-760.   DOI   ScienceOn
27 Köksal, H.O., Doran, B. and Turgay, T. (2009), "A practical approach for modeling FRP wrapped concrete columns", Constr. Build. Mater., 23(3), 1429-1437.   DOI   ScienceOn
28 Köksal, H.O., Aktan, S. and Kuruşçu, A.O. (2012), "Elasto-plastic finite element analysis of FRP-confined masonry columns", J. Compos. Construct., 16(4), 407-417.   DOI
29 Krstevska, L., Tashkov, Lj., Arun, G. and Akoz, F. (2007), "Evaluation of seismic behavior of historical monuments", SHH07 International Symposium on Studies on Historical Heritage Symposium Book, Antalya, Turkey.
30 Lourenco, P.B. (1996), "Computational strategies for masonry structures", Ph.D. Thesis, Civil Engineering and Geosciences, Delft University, Eindhoven, Netherland.
31 Lourenco, P.B. and Rots, J.G. (1997), "Multisurface interface model for analysis of masonry structures", J. Eng. Mech., 123(7), 660-668.   DOI   ScienceOn
32 LUSAS Finite Element System, Version 14.5-2 (2011), FEA Ltd, Surrey, UK.
33 Maïolino, S. and Luong, M.P. (2009), "Measuring discrepancies between coulomb and other geotechnical criteria: drucker-prager and matsuoka-nakai", Proceedings of the 7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal, September.
34 Marcari, G., Fabbrocino, G., Manfredi, G. and Prota, A. (2007), "Experimental and numerical evaluation of tuff masonry panels shear seismic capacity", Proceedings of the 10th North American Masonry Conference, St. Louis, USA.
35 Mele, E., De Luca, A. and Giordano, A. (2003), "Modelling and analysis of a basilica under earthquake loading", J. Cultur. Heritage, 4(4), 355-367.
36 Mohamad, G., Lourenco, P.B. and Roman, H.R. (2005), "Mechanical behavior assessment of concrete block masonry prisms under compression", Int. Conf. on Concrete for Structures, Coimbra, Portugal.
37 Milani, G., Lourenco, P.B. and Tralli, A. (2006), "Homogenised limit analysis of masonry walls, part I: failure surfaces", Comput. Struct., 84(3-4), 166-180.   DOI   ScienceOn
38 Milani, G. (2010), "3D FE limit analysis model for multi-layer masonry structures reinforced with FRP strips", Int. J. Mech. Sci., 52(6), 784-803.   DOI   ScienceOn
39 Milani, G., Milani, E. and Tralli, A. (2010), "Approximate limit analysis of full scale FRP-reinforced masonry buildings through a 3D homogenized FE package", Compos. Struct., 92(4), 918-935.   DOI   ScienceOn
40 Mohebkhah, A., Tasnimi, A.A. and Moghadam, H.A. (2008), "Nonlinear analysis of masonry-infilled steel frames with openings using discrete element method", J. Constr. Steel Res., 64(12), 1463-1472.   DOI   ScienceOn
41 Pivonka, P. and Willam, K. (2003), "The effect of the third invariant in computational plasticity", Eng. Comput., 20(5/6), 741-753.   DOI   ScienceOn
42 Popehn, J.R.B., Schultz, A.E., Lu, M., Stolarski, H.K. and Ojard, N.C. (2008), "Influence of transverse loading on the stability of slender unreinforced masonry walls", Eng. Struct., 30(10), 2830-2839.   DOI   ScienceOn
43 Ramamurthy, K. (1995), "Behavior of grouted concrete hollow block masonry prisms", Mag. Concrete Res., 47(173), 345-354.   DOI
44 Sayed Ahmed, E.Y. and Shrive, N.G. (1996), "Nonlinear finite-element model of hollow masonry", J. Struct. Eng., 122(6), 683-690.   DOI   ScienceOn
45 Shing, P.B., Lofti, H.R., Barzegarmehrabi, A. and Brunner, J. (1992), "Finite-element analysis of shear resistance of masonry wall panels with and without confining frames", Proceedings of the Tenth World Conference on Earthquake Engineering, 1-10, 2581-2586.
46 Yu, T., Teng, J.G., Wong, Y.L. and Dong, S.L. (2010), "Finite element modeling of confined concrete-I: drucker-prager type plasticity model", Eng. Struct., 32(3), 665-679.   DOI   ScienceOn
47 Stratford, T., Pascale, G., Manfroni, O. and Bonfiglioli, B. (2004), "Shear strengthening masonry panels with sheet glass-fiber reinforced polymer", J. Compos. Constr., 8(5), 434-443.   DOI   ScienceOn
48 Tasnimi, A.A. and Farzin, M. (2006), "Inelastic behavior of RC columns under cyclic loads, based on cohesion and internal friction angle of concrete", Modar. Tech. Eng. J., ISSN, 23, 29-40.
49 Tzamtzis, A.D. and Asteris, P.G. (2003), "Finite element analysis of masonry structures: part I- review of previous work", North American Masonry Conference, Clemson, South Carolina, June.