• Title/Summary/Keyword: failure event

Search Result 464, Processing Time 0.03 seconds

Frequence Analysis for City Gas Pipeline (도시가스 배관의 설비손상확률평가)

  • Park Kyo-Shik;Lee Jin-Han;Jo Young-Do;Park Jin-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.14-21
    • /
    • 2003
  • Frequency analysis of city gas pipeline was studied and then the method to give frequencies of failure by the third-party digging, corrosion, ground movement, and equipment failure which were known to be the major cause of risk of city gas pipeline. The failure by the third-party digging was analyzed by fault tree analysis and the failure by corrosion was analyzed by applying equation calculating remaining strength with time. The failure by ground movement was evaluated by applying modified model which was induced through weighing factors with basic failure rate model. The failure rate of equipment was calculated with both generic and specific data

  • PDF

Fault-Tolerant Controller Design for Vehicles Platooning

  • Yoon, Gyeong-Hwan;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1853-1856
    • /
    • 2003
  • This paper considers the problem of longitudinal control of a platoon of automotive vehicles on a straight lane of a highway and proposes control laws in the event of loss of communication between the lead vehicle and the other vehicles in the platoon. Since safety plays a key role in the development of an Automated Highway System, fault-tolerant control is vital. In this paper, we develop a control algorithm in vehicle platooning and prove that this control algorithm is stable for certain class of faults such as parameter uncertainties. The performance of the controller is demonstrated through a series of simulations incorporating various vehicles and AHS faults. Results of simulation shows that the vehicles have good performance in spite of simple automotive and AHS failure, such as actuator failure,that is to say, engine input failure, communication failure between lead vehicle and the another vehicles.

  • PDF

An Extraction of the Risk Events in the Construction Planning Phase (건설기획단계에서의 위험요인 도출)

  • Kwon, Soon-O;Kim, Seon-Gyoo;Lee, Nak-Woon
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.99-106
    • /
    • 2005
  • The planning phase of construction project success or failure of the enterprise decision the 1st dangerous duration which occurs very there is a possibility of making with the phase which is important, of construction project in life cycle most many risk. But the risk management from planning phase well does not become accomplished is the actual condition from existing construction project. Consequently, it classifies the risk event from project initial planning phase of construction project from this study which probably is substantial risk event the possibility of accomplishing from a planning phase successfully in order to be.

  • PDF

원자력 발전소에 있어서 방화의 최적화를 위한 확률론적 방법

  • 김화중
    • Fire Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.58-63
    • /
    • 1994
  • 독일 원자력 발전소에서는 포괄적인 방화 연구의 한 부분으로써 방화에 관한 분석과 그것을 최적화 할 수 있는 확률론적 방법을 개발하였다. 그 일반적인 흐름을 살펴보면, 미국의 화재 위험성 분석의 방법을 따랐으며, 세밀한 부분에서는 약간의 수정을 한 것이다. 먼저, 선정된 공장지역에서의 화재 사건 경로(fire event tree)는 화재가 발생했을 때, 방화 조치와 안전시스템을 능 수동적으로 고려해서 설정된다. 방화 조치와 안전 시스템에 있어서의 실패 모델(failure model)은 발화 후 시간과 화재 영향과 같은 일상적인 변수와 관련해서 생긴다. 이러한 관련성은 일차(first-order) 시스템의 신뢰성 이론을 적절히 이용해서 화재 사건 경로를 분석할 때 알 수 있다. 더불어 화재가 발생했을 떠 방화 시스템의 실패 빈도, event paths의 상대적인 비중, 이러한 path내에서의 방화 조치 그리고 실패모델의 변수 등은 모두 시간 함수로 계산된다. 이러한 자료에 근거를 두고, 방화의 최적화는 주로 event path, 방화조치와 비중이 가장 큰 변수를 수정함으로써 가능하게 된다. 이것은 독일의 1300 MW PWR reference plant를 예를 들어서 증명될 것이다. 또한 충고를 받아들여서 수정을 하는 것은 발전소 직원과 화재 피해의 위험성을 줄일 수 있다는 것을 보여주고 있다.

  • PDF

Failure of circular tunnel in saturated soil subjected to internal blast loading

  • Han, Yuzhen;Liu, Huabei
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.421-438
    • /
    • 2016
  • Explosions inside transportation tunnels might result in failure of tunnel structures. This study investigated the failure mechanisms of circular cast-iron tunnels in saturated soil subjected to medium internal blast loading. This issue is crucial to tunnel safety as many transportation tunnels run through saturated soils. At the same time blast loading on saturated soils may induce residual excess pore pressure, which may result in soil liquefaction. A series of numerical simulations were carried out using Finite Element program LS-DYNA. The effect of soil liquefaction was simulated by the Federal Highway soil model. It was found that the failure modes of tunnel lining were differed with different levels of blast loading. The damage and failure of the tunnel lining was progressive in nature and they occurred mainly during lining vibration when the main event of blast loading was over. Soil liquefaction may lead to more severe failure of tunnel lining. Soil deformation and soil liquefaction were determined by the coupling effects of lining damage, lining vibration, and blast loading. The damage of tunnel lining was a result of internal blast loading as well as dynamic interaction between tunnel lining and saturated soil, and stress concentration induced by a ventilation shaft connected to the tunnel might result in more severe lining damage.

Probabilistic Analyrgis of Slope Stactility for Progressive Failure (진행성 파괴에 대한 사면안정의 확률론적 해석)

  • 김영수
    • Geotechnical Engineering
    • /
    • v.4 no.2
    • /
    • pp.5-14
    • /
    • 1988
  • A probabilistic model for the progressive failure in a homogeneous soil slope consisting of strain-softening material is presented. The local safety margin of any slice above failure surface is assumed to follow a normal distribution. Uncertainties of the shear strength along potential failure surface are expressed by one-dimensional random field models. In this paper, only the case where failure initiates at toe and propagates up to the crest is considerd. The joint distribution of the safety margin of any two adjacent slices above the failure surface is assumed to be bivariate normal. The overall probability of the sliding failure is expressed as a product of probabilities of a series of conditional el.eats. Finally, the developed procedure has been applied in a case study to yield the reliability of a cut slope.

  • PDF

Insights from LDPM analysis on retaining wall failure

  • Gili Lifshitz Sherzer;Amichai Mitelman;Marina Grigorovitch
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.545-557
    • /
    • 2024
  • A real-case incident occurred where a 9-meter-high segment of a pre-fabricated concrete separation wall unexpectedly collapsed. This collapse was triggered by improperly depositing excavated soil against the wall's back, a condition for which the wall segments were not designed to withstand lateral earth pressure, leading to a flexural failure. The event's analysis, integrating technical data and observational insights, revealed that internal forces at the time of failure significantly exceeded the wall's capacity per standard design. The Lattice Discrete Particle Model (LDPM) further replicates the collapse mechanism. Our approach involved defining various parameter sets to replicate the concrete's mechanical response, consistent with the tested compressive strength. Subsequent stages included calibrating these parameters across different scales and conducting full-scale simulations. These simulations carried out with various parameter sets, were thoroughly analyzed to identify the most representative failure mechanism. We developed an equation from this analysis that quickly correlates the parameters to the wall's load-carry capacity, aligned with the simulation. Additionally, our study examined the wall's post-peak behavior, extending up to the point of collapse. This aspect of the analysis was essential for preventing failure, providing crucial time for intervention, and potentially averting a disaster. However, the reinforced concrete residual state is far from being fully understood. While it's impractical for engineers to depend on the residual state of structural elements during the design phase, comprehending this state is essential for effective response and mitigation strategies after initial failure occurs.

Modular Failure Diagnosis for Discrete Event Systems

  • Kim, Hee-Pyo;Park, Joon-Hyo;Lee, Dong-Hoon;Lee, Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.96.1-96
    • /
    • 2002
  • $\textbullet$ Abstract $\textbullet$ Introduction $\textbullet$ Building a Model for Diagnosis $\textbullet$ Modular Approach to Diagnosis $\textbullet$ Extension to a General Case $\textbullet$ Conclusion $\textbullet$ References

  • PDF

Competing Risks Regression Analysis (경쟁적 위험하에서의 회귀분석)

  • Baik, Jaiwook
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.130-142
    • /
    • 2018
  • Purpose: The purpose of this study is to introduce regression method in the presence of competing risks and to show how you can use the method with hypothetical data. Methods: Survival analysis has been widely used in biostatistics division. But the same method has not been utilized in reliability division. Especially competing risks, where more than a couple of causes of failure occur and the occurrence of one event precludes the occurrence of the other events, are scattered in reliability field. But they are not utilized in the area of reliability or they are analysed in the wrong way. Specifically Kaplan-Meier method is used to calculate the probability of failure in the presence of competing risks, thereby overestimating the real probability of failure. Hence, cumulative incidence function is introduced. In addition, sample competing risks data are analysed using cumulative incidence function along with some graphs. Lastly we compare cumulative incidence functions with regression type analysis briefly. Results: We used cumulative incidence function to calculate the survival probability or failure probability in the presence of competing risks. We also drew some useful graphs depicting the failure trend over the lifetime. Conclusion: This research shows that Kaplan-Meier method is not appropriate for the evaluation of survival or failure over the course of lifetime in the presence of competing risks. Cumulative incidence function is shown to be useful in stead. Some graphs using the cumulative incidence functions are also shown to be informative.