• Title/Summary/Keyword: failure cost

Search Result 1,221, Processing Time 0.026 seconds

Comments on : An Expected Loss Model for FMEA under Periodic Monitoring of Failure Causes (FMEA에서 주기적인 고장원인 감시하의 기대손실모형에 대한 소고)

  • Yun, Won Young;Kwon, Hyuck-Moo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.3
    • /
    • pp.321-324
    • /
    • 2014
  • Kwon et al. (2013) studied the optimal monitoring interval of systems with finite life cycle. It is assumed that there are several failure modes from several failure causes and the occurrence of causes follows a homogeneous Poisson process. The total expected cost is used as an optimization criterion. In this article, we derive newly the total expected cost under the same assumptions and consider some extended models.

A State-age Dependent Policy for a Shock Process - Structural Relationships of Optimal Policy -

  • Joo, Nam-Yun
    • Journal of the military operations research society of Korea
    • /
    • v.10 no.1
    • /
    • pp.23-39
    • /
    • 1984
  • Consider a failure model for a stochastic system. A shock is any perturbation to the system which causes a random amount of damage to the system. Any of the shocks can cause the system to fail at shock times. The amount of damage at each shock is a function of the sum of the magnitudes of damage caused from all previous shocks. The times between shocks form a sequence of independent and identically distributed random variables. The system must be replaced upon failure at some cost but it also can be replaced before failure at a lower cost. The long term expected cost per unit time criterion is used. Structural relationships of the optimal replacement policy under the appropriate regularity conditions will be developed. And these relationships will provide theoretical background for the algorithm development.

  • PDF

Evaluation of Bamboo Reinforcements in Structural Concrete Member

  • Siddika, Ayesha;Al Mamun, Md. Abdullah;Siddique, Md. Abu Bakar
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.4
    • /
    • pp.13-19
    • /
    • 2017
  • This study is based on the use and performance of bamboo reinforcements in construction of low-cost structures. This study investigated the physical and mechanical properties of bamboo reinforcements. Bamboo reinforced concrete beam specimens were tested with different reinforcement ratios and observed the load capacity, deflection and failure patterns. It was observed that, flexural strength of bamboo reinforced column is sufficient higher than plain cement concrete and comparable to steel reinforced concrete beams. Bamboo reinforced concrete columns with different reinforcement ratio also tested and observed the ultimate compressive strength and failure pattern. It found, all columns failed in a similar pattern due to crushing of concrete. According to cost analysis, bamboo reinforced beams and columns with moderate reinforcement ratio showed the best strength-cost ratio among plain cement concrete and steel reinforced concrete.

Optimal Inspection Policy for One-Shot Systems Considering Reliability Goal (목표 신뢰도를 고려한 원-샷 시스템의 최적검사정책)

  • Jeong, Seung-Woo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.96-104
    • /
    • 2017
  • A one-shot system (device) refers to a system that is stored for a long period of time and is then disposed of after a single mission because it is accompanied by a chemical reaction or physical destruction when it operates, such as shells, munitions in a defense weapon system and automobile airbags. Because these systems are primarily related with safety and life, it is required to maintain a high level of storage reliability. Storage reliability is the probability that the system will operate at a particular point in time after storage. Since the stored one-shot system can be confirmed only through inspection, periodic inspection and maintenance should be performed to maintain a high level of storage reliability. Since the one-shot system is characterized by a large loss in the event of a failure, it is necessary to determine an appropriate inspection period to maintain the storage reliability above the reliability goal. In this study, we propose an optimal inspection policy that minimizes the total cost while exceeding the reliability goal that the storage reliability is set in advance for the one-shot system in which periodic inspections are performed. We assume that the failure time is the Weibull distribution. And the cost model is presented considering the existing storage reliability model by Martinez and Kim et al. The cost components to be included in the cost model are the cost of inspection $c_1$, the cost of loss per unit time between failure and detection $c_2$, the cost of minimum repair of the detected breakdown of units $c_3$, and the overhaul cost $c_4$ of $R_s{\leq}R_g$. And in this paper, we will determine the optimal inspection policy to find the inspection period and number of tests that minimize the expected cost per unit time from the finite lifetime to the overhaul. Compare them through numerical examples.

Cost-effective method for reducing local failure of floodwalls verified by centrifuge tests

  • Chung R. Song;Binyam Bekele;Brian D. Sawyer;Ahmed Al-Ostaz;Alexander Cheng;Vanadit-Ellis Wipawi
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.155-165
    • /
    • 2023
  • Hurricane Katrina swept New Orleans, Louisiana, USA, in 2005, causing more than 1,000 fatalities and severe damage to the flood protection system. Recovery activities are complete, however, clarifying failure mechanisms and devising resilient and cost-effective retrofitting techniques for the flood protection system are still of utmost importance to enhance the general structural integrity of water retaining structures. This study presents extensive centrifuge test results to find various failure mechanisms and effective retrofitting techniques for a levee system. The result confirmed the rotational failure and translational failure mechanisms for the London Ave. Canal levee and 17th St. Canal levee, respectively. In addition, it found that the floodwalls with fresh waterstop in their joints perform better than those with old/weathered waterstop by decreasing pore water pressure build-up in the levee. Structural caps placed on the top of the joints between I-walls could also prevent local failure by spreading the load to surrounding walls. At the same time, the self-sealing bentonite-sand mixture installed along the riverside of floodwalls could mitigate the failure of floodwalls by blocking the infiltration of seepage water into the gap formed between levee soils and floodwalls.

Optimal Target Reliability of Bridges Based on Minimum Life-Cycle Cost Consideration

  • Wang, Junjie;Lee, J-C
    • Computational Structural Engineering : An International Journal
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 2002
  • Cost-effectiveness in design is considered for determining the target reliability of concrete bridges under seismic actions. This objective can be achieved based on the economic optimization of the expected life-cycle cost of a bridge, which includes initial cost, direct losses, and indirect losses of a bridge due to strong earthquakes over its lifetime. A separating factor is defined to consider the redundancy of a transportation network. The Park-Ang damage model is employed to define the damage of a bridge under seismic action, and a Monte Carlo method based on the DRAIN-2DX program is developed to assess the failure probability of a bridge. The results for an example bridge analyzed in this paper show that the optimal target failure probability depends on the traffic volume carried by the bridge and is between 1.0×10/sup -3/ to 3.0×10/sup -3/ over a life of 50 years.

  • PDF

Cost analysis on renewable warranty policies subject to imperfect strategies using inter-failure intervals

  • Park, Minjae
    • International Journal of Reliability and Applications
    • /
    • v.14 no.1
    • /
    • pp.41-54
    • /
    • 2013
  • In this paper, cost analysis is conducted using inter-failure interval under renewable warranty subject to imperfect repair for multi-component system. One way to model the imperfect repair is to use the quasi-renewal process (Wang and Pham 1996). Two alternative quasi-renewal processes were suggested by Park and Pham (2010) using quasi-renewal process; first is an altered quasi-renewal process with random variable parameter and second is a mixed quasi-renewal process considering replacement service and repair service, simultaneously. In this study, we use the altered and mixed quasi-renewal processes and develop the warranty cost model to obtain the expected value of warranty cost and to help company make important decisions regarding the warranty policy. Numerical examples are used to demonstrate the applicability of the methodology derived in the paper.

  • PDF

Economic Constant Stress Plans for Accelerated Life Testing (가속수명시험을 위한 경제적 일정스트레스 계획의 개발)

  • Seo, Sun-Keun;Kim, Kap-Seok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.4
    • /
    • pp.517-526
    • /
    • 1999
  • This paper deals with two economic optimal designs of constant-stress accelerated life test(ALT) where failure distribution follows one of location-scale family, i. e., exponential, Weibull, and lognormal distributions which have been ones of the popular choices of failure distributions. Two optimization criteria to develop ALT plans are the statistical efficiency per unit expected cost which consists of the fixed test cost, cost being proportional to the number of test units, and variable test cost depending on test period and stress level, and the expected loss which combines Taguchi's quadratic loss function and expected test cost. Optimum plan determines the low stress level, test units allocated to each stress, and censoring times at two stress levels under Type I censoring. The proposed ALT plans are illustrated with a numerical example and sensitivity analyses are conducted to study effects of pre-estimates of design parameters.

  • PDF

A Study on Development Cost Attributes Analysis of NHPP Software Reliability Model Based on Rayleigh Distribution and Inverse Rayleigh Distribution (레일리 분포와 역-레일리 분포에 근거한 NHPP 소프트웨어 신뢰성 모형의 개발비용 속성 분석에 관한 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.554-560
    • /
    • 2019
  • In this study, after applying the finite failure NHPP Rayleigh distribution model and NHPP Inverse Rayleigh distribution model which are widely used in the field of software reliability to the software development cost model, the attributes of development cost and optimal release time were compared and analyzed. To analyze the attributes of software development cost, software failure time data was used, parametric estimation was applied to the maximum likelihood estimation method, and nonlinear equations were calculated using the bisection method. As a result, it was confirmed that Rayleigh model is relatively superior to Inverse Rayleigh model because software development cost is relatively low and software release time is also fast. Through this study, the development cost attributes of the Rayleigh model and the Inverse Rayleigh model without the existing research examples were newly analyzed. In addition, we expect that software developers will be able to use this study as a basic guideline for exploring software reliability improvement method and development cost attributes.

The Optimized Standards and Criteria for Installing Switches on Distribution Feeder (국내 배편계통의 최적 개폐기 설치 기준)

  • Jo, Nam-Hun;Ha, Bok-Nam;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.5
    • /
    • pp.238-246
    • /
    • 2002
  • Utilities are trying to install the equipment of high quality to avoid deterioration of supply reliability. In addition, many sectionalizing switches which can decrease the total outage value for a fault are installed for the same reason. Therefore, utilities are interested in stun dards and criteria for installing switches to optimize the total cost on distribution systems. The affect of sectionalizing switches installed on distribution feeder is gradually decreased because the failure rate on distribution feeder is decreased. Also the automation for distribution systems is widely applied for the efficient operation. Therefore, the renewal for installation standards of sectionalizing switches Is required to reflect the current operation situation. The variable data is used to consider the KEPCO's real situation of distribution feeder as follows; the feeder capacity, connecting rate, feeder length, failure rate of distribution feeder, the failure rate of switches, perception time of feeder fault, the restoration time for a faulted section, the transfer time to other feeders, and the switching time. In this study, We propose equations which can determine the number of sectionalizing switches for minimizing the outage and switch installation cost.