• Title/Summary/Keyword: failure condition

Search Result 1,899, Processing Time 0.023 seconds

Failure Prediction Reliability Model based on the Condition-based Maintenance (CBM기반의 고장 예측 신뢰성 모델)

  • 김연수;정영배
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.171-180
    • /
    • 1999
  • Industrial equipment reliability improvement and maintenance is gaining attention as the next great opportunity for manufacturing productivity improvement. Reactive maintenance is expensive because of extensive unplanned downtime and damage to machinery. To avoid such an unplanned machine downtime, it is needed to use proactive maintenance approach by either using historical maintenance data or by sensing machine conditions. This paper discusses failure diagonosis and prediction based on the condition-based maintenance and reliability technique. Thus, by enabling such a framework, it can bring us more efficient planning and execution of maintenance to reduce costs and/or increase profits.

  • PDF

A Study on the Actual Condition of Domestic 170kV GIS- Electrical Facilities of Private Use (국내 자가용 170kV GIS 사용 실태조사)

  • Cheon, Jong-Cheol;Lee, Eun-Suk;Kim, Jong-Seo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1741-1743
    • /
    • 2003
  • In this paper, We presents the actual condition of domestic 170kv GIS(Gas Insulated Swichgear)- Electrical Facilities of Private Use be examined by post. We are able to confirm the distribution characteristic analysis of GIS failure- type of industry, occurrence frequency, part and counter plan research for failure preventing.

  • PDF

Physical modelling of sliding failure of concrete gravity dam under overloading condition

  • Zhu, Hong-Hu;Yin, Jian-Hua;Dong, Jian-Hua;Zhang, Lin
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.89-106
    • /
    • 2010
  • Sliding within the dam foundation is one of the key failure modes of a gravity dam. A two-dimensional (2-D) physical model test has been conducted to study the sliding failure of a concrete gravity dam under overloading conditions. This model dam was instrumented with strain rosettes, linear variable displacement transformers (LVDTs), and embedded fiber Bragg grating (FBG) sensing bars. The surface and internal displacements of the dam structure and the strain distributions on the dam body were measured with high accuracy. The setup of the model with instrumentation is described and the monitoring data are presented and analyzed in this paper. The deformation process and failure mechanism of dam sliding within the rock foundation are investigated based on the test results. It is found that the horizontal displacements at the toe and heel indicate the dam stability condition. During overloading, the cracking zone in the foundation can be simplified as a triangle with gradually increased height and vertex angle.

Undrained strength-deformation characteristics of Bangkok Clay under general stress condition

  • Yimsiri, Siam;Ratananikom, Wanwarang;Fukuda, Fumihiko;Likitlersuang, Suched
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.419-445
    • /
    • 2013
  • This paper presents an experimental study on the influence of principal stress direction and magnitude of intermediate principal stress on the undrained stress-strain-strength behaviors of Bangkok Clay. The results of torsional shear hollow cylinder and advanced triaxial tests with various principal stress directions and magnitudes of intermediate principal stress on undisturbed Bangkok Clay specimens are presented. The analysis of testing results include: (i) stress-strain and pore pressure behaviors, (ii) stiffness characteristics, and (iii) strength characteristics. The results assert clear evidences of anisotropic characteristics of Bangkok Clay at pre-failure and failure conditions. The magnitude of intermediate principal stress for plane-strain condition is also investigated. Both failure surface and plastic potential in deviatoric plane of Bangkok Clay are demonstrated to be isotropic and of circular shape which implies an associated flow rule. It is also observed that the shape of failure surface in deviatoric plane changes its size, while retaining its circular shape, with the change in direction of major principal stress. Concerning the behavior of Bangkok Clay found from this study, the discussions on the effects of employed constitutive modeling approach on the resulting numerical analysis are made.

High Electrical Current Stressing Effects on the Failure Mechanisms of Austudbumps/ACFFlip Chip Joints (고전류 스트레싱이 금스터드 범프를 이용한 ACF 플립칩 파괴 기구에 미치는 영향)

  • Kim Hyeong Jun;Gwon Un Seong;Baek Gyeong Uk
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.195-202
    • /
    • 2003
  • In this study, failure mechanisms of Au stud bumps/ACF flip chip joints were investigated underhigh current stressing condition. For the determination of allowable currents, I-V tests were performed on flip chip joints, and applied currents were measured as high as almost 4.2Amps $(4.42\times10^4\;Amp/cm^2)$. Degradation of flip chip joints was observed by in-situ monitoring of Au stud bumps-Al pads contact resistance. All failures, defined at infinite resistance, occurred at upward electron flow (from PCB pads to chip pads) applied bumps (UEB). However, failure did not occur at downward electron flow applied bumps (DEB). Only several $m\Omega$ contact resistance increased because of Au-Al intermetallic compound (IMC) growth. This polarity effect of Au stud bumps was different from that of solder bumps, and the mechanism was investigated by the calculation of chemical and electrical atomic flux. According to SEM and EDS results, major IMC phase was $Au_5Al_2$, and crack propagated along the interface between Au stud bump and IMC resulting in electrical failures at UEB. Therefore. failure mechanisms at Au stud bump/ACF flip chip Joint undo high current density condition are: 1) crack propagation, accompanied with Au-Al IMC growth. reduces contact area resulting in contact resistance increase; and 2) the polarity effect, depending on the direction of electrons. induces and accelerates the interfacial failure at UEBs.

  • PDF

LTE Mobility Enhancements for Evolution into 5G

  • Park, Hyun-Seo;Choi, Yong-Seouk;Kim, Byung-Chul;Lee, Jae-Yong
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1065-1076
    • /
    • 2015
  • Network densification is regarded as the dominant driver for wireless evolution into the era of 5G. However, in this context, interference-limited dense small cell deployments are facing technical challenges in mobility management. The recently announced results from an LTE field test conducted in a dense urban area show a handover failure (HOF) rate of over 21%. A major cause of HOFs is the transmission failure of handover command (HO CMD) messages. In this paper, we propose two enhancements to HO performance in LTE networks - radio link failure-proactive HO, which helps with the reliable transmission of HO CMD messages while the user equipment is under a poor radio link condition, and Early Handover Preparation with Ping-Pong Avoidance (EHOPPPA) HO, which assures reliable transmission of HO CMD under a good radio link condition. We analyze the HO performance of EHOPPPA HO theoretically, and perform simulations to compare the performance of the proposed schemes with that of standard LTE HO. We show that they can decrease the HOF rate to nearly zero through an analysis, and based on the simulation results, by over 70%, without increasing the ping-pong probability.

Effect of Ground Subsidence on Reliability of Buried Pipelines (지반침하가 매설배관의 건전성에 미치는 영향)

  • 이억섭;김동혁
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.173-180
    • /
    • 2004
  • This paper presents the effect of varying boundary conditions such as ground subsidence, internal pressure and temperature variation for buried pipelines on failure prediction by using a failure probability model. The first order Taylor series expansion of the limit state function incorporating with von-Mises failure criteria is used in order to estimate the probability of failure mainly associated with three cases of ground subsidence. Using stresses on the buried pipelines, we estimate the probability of pipelines with von-Mises failure criterion. The effects of varying random variables such as pipe diameter, internal pressure, temperature, settlement width, load for unit length of pipelines, material yield stress and pipe thickness on the failure probability of the buried pipelines are systematically studied by using a failure probability model for the pipeline crossing ground subsidence regions which have different soil properties.

The Stability Analysis of Submerged Excavated Slopes (수중 굴착사면의 안정해석)

  • Lee, M.W.;Lee, C.K.;Kim, H.J.;Ahn, K.K.;Heo, Y.
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.147-154
    • /
    • 1997
  • The main purpose of this study is to investigate the failure surface in a soil mass by a excavation of the model ground. The failure mechanism of an earth structure is usually determined from field failure observations or from laboratory model tests at failure. To study the failure surface for the excavated slope, laboratory model tests were performed by changing the angle of the excavated slope and the ground condition. Results of the laboratory model tests were compared with those obtained with theoretical solutions using limit equilibrium analysis method. The results of model tests show that, there is a failure to create a straight line in the low angle of excavated surface and a create a circle as the angle increases. As the angle of excavated surface is increasing, the angle of the failure surface increases too. In the angle of the failure surface, the submerged ground is less than the dry ground at $3.2^{\circ}$.

  • PDF

DES Approach Failure Recovery of Pump-valve System (펌프-밸브 시스템의 DES 접근론적 Failure Recovery)

  • Son, H.I.;Kim, K.W.;Lee, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.647-650
    • /
    • 2000
  • For the failure diagnosis of industrial system like various manufacturing systems, power plants and etc, many failure diagnosis approaches are considered. Here we are focus on the DES approach for failure diagnosis. We treats of failure recovery problem that is euly not mentioned in DES approach. The procedure to design a recoverable diagnoser is presented. And the recoverability, necessary and sufficient condition fur recoverability are defined. Then we make the high-level diagnoser to reduce the state size of recoverable diagnsoer. Finally, a pump-valve system example is presented.

  • PDF

Failure Probability Model of Buried Pipeline (매설배관의 파손 확률 모델)

  • Lee, Eok-Seop;Pyeon, Jang-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.116-123
    • /
    • 2001
  • A failure probability model based on Von-Mises failure criterion and the standard normal probability function is proposed. The effects of varying boundary conditions such as nearby cavity, backfill, load cycle and corrosion on failure probability of the buried pipes are systematically investigated. The location of cavity is found to affect failure probability of buried pipeline within a certain limit. It is noted that the flexibility of backfill plays a great role to change the failure probability of buried pipeline. Furthermore, the corrosion gives less effects than other boundary conditions such as cavity, load as cavity, load cycle, and backfill to the failure probability of buried pipeline.

  • PDF