• 제목/요약/키워드: factor-nuclear ${\kappa}B$

검색결과 1,008건 처리시간 0.027초

BV-2 미세아교세포에서 메트포르민 또는 알파-리포산의 염증반응과 NLRP3 인플라마솜 약화에 관한 연구 (Metformin or α-Lipoic Acid Attenuate Inflammatory Response and NLRP3 Inflammasome in BV-2 Microglial Cells)

  • 최혜림;하지선;김인식;양승주
    • 대한임상검사과학회지
    • /
    • 제52권3호
    • /
    • pp.253-260
    • /
    • 2020
  • 알츠하이머 병은 인지 기능 저하로 인한 치매 발생으로 설명할 수 있는 만성 및 진행성 신경 퇴행성 질환이다. 알츠하이머 병의 특징은 세포 외 및 세포 내 아밀로이드 플라크의 형성이다. 아밀로이드 베타는 알츠하이머 병의 특징이며 미세아교세포는 아밀로이드 베타의 존재하에 활성화될 수 있다. 활성화된 미세아교세포는 전 염증성 사이토카인을 분비한다. 게다가, S100A9는 염증의 중요한 선천성 전 염증 기여자이며 알츠하이머 병에 잠재적인 기여자로 알려져 있다. 이 연구는 아밀로이드 베타 및 S100A9이 처리된 BV-2 세포에서 염증반응 및 NLRP3 인플라마솜 활성화에 대한 메트포르민 및 알파리포산의 효과를 조사했다. 메트포르민과 알파-리포산은 종양 괴사 인자-알파 및 일터루킨-6와 같은 염증성 사이토카인을 약화시킨다. 또한 메트포르민과 알파-리포산은 JNK, ERK, p38의 인산화를 억제하고, NF-kB 경로 및 NLRP3 인플라마솜의 활성화를 억제했다. 또한 메트포르민과 알파-리포산은 M1 표현형인 ICAM1의 수준을 감소시킨 반면 M2 표현형인 ARG1은 증가시켰다. 이러한 발견은 메트포르민과 알파-리포산이 아밀로이드베타 및 S100A9에 의한 신경 염증 반응에 대한 치료제가 될 수 있음을 시사한다.

이삭물수세미(Myriophyllum spicatum L.) 에탄올 추출물의 항산화와 항염증 효과 (Evaluation Antioxidant and Anti-inflammatory Activity of Ethanolic Extracts of Myriophyllum spicatum L. in Lipopolysaccharide-stimulated RAW 264.7 Cells )

  • 김철환;이영경;김민진;최지수;황병수;조표연;김영준;정용태
    • 한국자원식물학회지
    • /
    • 제36권1호
    • /
    • pp.15-25
    • /
    • 2023
  • 이삭물수세미는 민간에서는 전초를 고름, 염증 등에 약용으로 사용하였으나, 염증에 대한 연구가 미비한 상황이다. 이에 본 연구에서는 이삭물수세미 추출물(EMS)의 항산화 효능과 항염증 효능을 분석하였다. 항산화 효능은 DPPH 라디칼 소거능과 환원력을 통해 산화적 스트레스를 통해 염증을 유발시킬 수 있는 ROS (Hong et al., 2020; Snezhkina et al., 2019)를 억제하는지 확인하였고, 항염증 효능은 염증 발현 인자인 LPS를 이용하여 RAW 264.7 대식세포에 염증을 유도한 뒤 pro-inflammatory cytokine (TNF-α, IL-1β)과 염증 매개체(NO, PGE2)의 억제 및 TLR4/Myd88/NF-κB signaling pathway 발현 억제를 통해 확인하였다. 연구 결과, 항산화 효능에 있어서는 DPPH 라디칼 소거능과 Fe3+를 Fe2+로 환원시키는 환원력이 농도 의존적으로 증가함을 확인하였다. 무독성 상태에서 실험하기 위해 LPS와 EMS를 처리한 RAW 264.7 대식세포에서 90% 이상의 생존율을 나타내는 조건에서 실험을 진행하였다. LPS로 염증이 유도된 RAW 264.7 세포에서 EMS는 염증 매개 인자의 발현 및 생성 억제(iNOS에 의한 NO 생성 및 COX-2에 의한 PGE2 생성억제)와 pro-inflammatory cytokine (TNF-α 및 IL-1β)의 생성 또한 억제하였다. 특이적으로 COX-2에 의한 PGE2 생성 억제에서는 고농도에서 작용함을 확인하였고, IL-1β에서는 약한 억제력을 보였다. 이후 signaling pathway에서 염증 전사인자 경로를 확인하기 위하여 TLR4/MyD88의 활성을 확인하였고, EMS 처리에 따라 농도 의존적으로 억제되는 것을 확인하였다. 이에 따라 염증 초기 단계에서 NF-κB p65가 nuclear로 들어가는 것을 억제하는지 확인하기 위해 early time (LPS 처리 후 30, 60 min) 조건으로 nuclear에서 p65 인산화를 확인하였다. 그 결과, LPS 자극으로 인해 증가된 p65 인산화가 EMS에 의해 부분적으로 억제됨을 확인하였다. 이상의 결과를 통해 LPS로 염증이 유도된 RAW 264.7 대식세포에서 EMS가 COX-2에 의한 PGE2 생성 억제와 IL-1β의 생성에 있어 낮은 억제력을 가진 반면, iNOS에 의한 NO과 TNF-α 생성 및 TLR4/MyD88 singnaling pathway에 있어 강한 억제력을 가짐을 확인하였다. 결론적으로 EMS가 ROS를 제거하고 TLR4/MyD88/NF-κB signaling pathway를 억제함으로써 염증 인자들의 전사를 억제하고, 염증 인자 부분에서는 iNOS에 의한 NO 생성과 TNF-α 생성을 강하게 억제하여 RAW 264.7 대식세포에서 LPS로 자극된 염증을 억제하는 것으로 판단된다. 또한 TLR4/Myd88/NF-κB signaling pathway를 통한 pro-inflammatory cytokine과 염증 매개체와의 연관성에 대한 기초자료로 활용할 수 있는 근거 자료가 될 수 있을 것으로 생각된다.

The role of discoid domain receptor 1 on renal tubular epithelial pyroptosis in diabetic nephropathy

  • Zhao, Weichen;He, Chunyuan;Jiang, Junjie;Zhao, Zongbiao;Yuan, Hongzhong;Wang, Facai;Shen, Bingxiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권6호
    • /
    • pp.427-438
    • /
    • 2022
  • Pyroptosis, a form of cell death associated with inflammation, is known to be involved in diabetic nephropathy (DN), and discoid domain receptor 1 (DDR1), an inflammatory regulatory protein, is reported to be associated with diabetes. However, the mechanism underlying DDR1 regulation and pyroptosis in DN remains unknown. We aimed to investigate the effect of DDR1 on renal tubular epithelial cell pyroptosis and the mechanism underlying DN. In this study, we used high glucose (HG)-treated HK-2 cells and rats with a single intraperitoneal injection of streptozotocin as DN models. Subsequently, the expression of pyroptosis-related proteins (cleaved caspase-1, GSDMD-N, Interleukin-1β [IL-1β], and interleukin-18 [IL-18]), DDR1, phosphorylated NF-κB (p-NF-κB), and NLR family pyrin domain-containing 3 (NLRP3) inflammasomes were determined through Western blotting. IL-1β and IL-18 levels were determined using ELISA. The rate of pyroptosis was assessed by propidium iodide (PI) staining. The results revealed upregulated expression of pyroptosisrelated proteins and increased concentration of IL-1β and IL-18, accompanied by DDR1, p-NF-κB, and NLRP3 upregulation in DN rat kidney tissues and HG-treated HK-2 cells. Moreover, DDR1 knockdown in the background of HG treatment resulted in inhibited expression of pyroptosis-related proteins and attenuation of IL-1β and IL-18 production and PI-positive cell frequency via the NF-κB/NLRP3 pathway in HK-2 cells. However, NLRP3 overexpression reversed the effect of DDR1 knockdown on pyroptosis. In conclusion, we demonstrated that DDR1 may be associated with pyroptosis, and DDR1 knockdown inhibited HG-induced renal tubular epithelial cell pyroptosis. The NF-κB/NLRP3 pathway is probably involved in the underlying mechanism of these findings.

파골세포 분화에 복령 추출물이 미치는 영향 (Effect of Hoelen in RANKL-induced Osteoclast Differentiation)

  • 천윤희;곽성철;오재민;최민규;김정중;곽한복;이명수;전병훈;문서영
    • 동의생리병리학회지
    • /
    • 제26권3호
    • /
    • pp.320-324
    • /
    • 2012
  • Osteoporosis is an important public health issue in postmenopausal women. It is a major public health concern and is widely believed that osteoporosis results from imbalance between bone resorption and bone formation. Recently natural products from plants have been extensively studied as therapeutic drugs to treat and prevent various diseases. Hoelen (scientific name, Poria cocos) is a mushroom that is used in traditional Chinese medicine. Hoelen exhibits anti-inflammatory activity and has a protective effect on tumor progression. However, the effect of hoelen in osteoclast differentiation remains unknown. Thus, we examined the effect of hoelen in receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. Hoelen significantly inhibited RANKL-induced osteoclast differentiation in bone marrow-derived macrophages (BMMs) in dose dependent manner without toxicity. Also, we showed that hoelen significantly inhibited the mRNA expression of tartrate-resistant acid phophatase (TRAP) and nuclear factor of activated T cells 1 (NFATc1) in BMMs treated with RANKL. In Particular, hoelen greatly inhibited the protein expression of NFATc1. Ectopic expression of NFATc1 partially reverses hoelen-mediated inhibition of osteoclast differentiation. Taken together, our results demonstrated that hoelen may be useful treatment option of bone-related disease such as osteoporosis, reumatoid arthritis, and periodontitis.

Physiological Activity of Coffee Beans and Roasted Black Beans (Rhynchosia nulubilis) Mixture Extracts for Coffee Alternative Beverage Development

  • Kim, Ae-Jung;Lee, Hankyu;Ko, Hyuk Wan;Ko, Seong Hee;Woo, Nariyah
    • 한국식품영양학회지
    • /
    • 제29권2호
    • /
    • pp.178-185
    • /
    • 2016
  • This study was designed to develop and to qualify a coffee alternative beverage using a mixture of coffee beans and roasted black beans (Rhynchosia nulubilis). Therefore, the total isoflavone content (TIC), total phenol content (TPC), antioxidant activity, anti-inflammatory activity, NFATc1 (Nuclear factor of activated T-cells c1) expression in RANKL (receptor activator of nuclear factor kappa-B ligand)-stimulated RAW264.7 cells and sensory evaluation were measured for 5 different Cb (coffee bean)-RoS (roasted seomoktae) mixture extracts (Cb100RoS0, Cb75RoS25, Cb50RoS50, Cb25RoS75, and Cb0RoS100). Cb0RoS100 had the highest TIC ($516.83{\pm}36.61mg/100g$) and TPC ($18.11{\pm}1.77mg$ TAE/100 g) along with the highest antioxidant activity as measured by DPPH radical scavenging activity ($73.55{\pm}8.11%$) and ABTS radical scavenging activity ($63.27{\pm}7.27%$). Also, Cb0RoS100 showed the highest anti-inflammatory activity as measured by NO production ($13.57{\pm}2.21{\mu}M$) and PGE2 production ($3.25{\pm}0.21ng/mL$). The more the RoS ratio was increased in the mixtures of Cb-RoS, the more the NFATc1 protein expression was decreased in RANKL-stimulated RAW264.7 cells. In case of sensory evaluation, Cb50RoS50 had the highest scores for flavor, delicate flavor and overall quality, which were similar to those in Cb alone (Cb100RoS0). We suggest that the use of RoS replacement instead of Cb in/as a coffee alternative beverage may help to reduce the risk of caffeine-related bone loss and/or bone disease by effectively blocking NFATc1 expression in RANKL-stimulated RAW264.7 cells compared with Cb alone.

Effects of Cortical Activation upon Mechanical Force-Mediated Changes in the OPG and RANKL Levels in Gingival Crevicular Fluid

  • Yu, Nam-Hyun;Kwak, So-Yeong;Hong, So-Yeon;Kim, Jong-Ghee;Jeon, Young-Mi;Lee, Jeong-Chae
    • International Journal of Oral Biology
    • /
    • 제34권4호
    • /
    • pp.199-203
    • /
    • 2009
  • This study investigated whether orthodontic force influences the production of osteoprotegerin (OPG) and receptor activator of nuclear factor-kappa B ligand (RANKL) in vivo, both of which are affected by cortical activation. Mechanical force was applied to the maxillary premolars of orthodontic patients by fitting the transpalatal arch prior to cortical activation of the gingival tissue. Gingival crevicular fluid (GCF) samples were then collected from each patient using paper strips before and after 1, 3, 7 or 14 days of treatment. The OPG and RANKL levels in the GCF were determined by enzyme-linked immunosorbent assays. The levels of OPG were significantly increased after 1 day of fitting the appliance and decreased to basal levels at 3 days after fitting. In contrast, the RANKL levels were dramatically decreased at 1 day after fitting, but recovered to those of the untreated control at 3 days after the force application. The force-mediated changes in the OPG and RANKL levels of the GCF were unaffected by cortical activation during these experimental periods. Collectively, these results suggest that an acute and severe change between the OPG and RANKL levels plays an important role in stimulating the cellular responses required for alveolar bone remodeling by orthodontic treatment.

동충하초가 파골세포의 분화와 유전자 발현에 미치는 영향 (Effects of Cordyceps militaris(CM) on Osteoclastogenesis and Gene Expression)

  • 최경희;유정은;황귀서;유동열
    • 대한한방부인과학회지
    • /
    • 제25권3호
    • /
    • pp.16-26
    • /
    • 2012
  • Objectives: This study was performed to evaluate effects of Cordyceps militaris(CM) on osteoclast differentiation and its related gene expression. Methods: We used mouse myeloid cells RAW 264.7 stimulated by receptor activator of nuclear factor kappa-B ligand(RANKL) to induce osteoclast differentiation. There are four groups of which RAW 264.7 cells are not stimulated by RANKL (Normal), stimulated by RANKL without CM(Control), stimulated by RANKL with 0.1 ${\mu}g/ml$ of CM(CM 0.1), stimulated by RANKL with 1 ${\mu}g/ml$ of CM(CM 1). Osteoclastogenesis was measured by counting Tartrate-resistant acid phosphatase-positive multinucleated cells [TRAP(+) MNC]. RT-PCR was performed to evaluate the inhibitory effect of CM on gene expression(TRAP, AKT1, JNK1, NFATc1, c-Fos, MITF). Results: 1. CM decreased the number of TRAP(+) osteoclast in RANKL-stimulated RAW 264.7 cell at the concentration of 0.1 ${\mu}g/ml$ and 1 ${\mu}g/ml$. 2. CM decreased the expression of TRAP in osteoclast at the concentration of 1 ${\mu}g/ml$. 3. CM decreased the expression of AKT1, JNK1 in osteoclast at the concentration of 1 ${\mu}g/ml$. 4. CM didn't affect the expression of NFATc1, c-Fos, MITF in osteoclast. Conclusions: Cordyceps militaris has inhibitory effects on osteoclast differentiation and its related gene expression. These results suggest that Cordyceps militaris has a potential as a treatment of osteoporosis.

식이불포화지방산을 섭취한 Apo E KO Mice에서의 녹차의 항동맥경화억제 효과 (Anti-atherosclerotic Effect of Green Tea in Poluynsaturated Fatty Acids-treated Apo E KO Mice)

  • 김효숙;이명숙
    • Journal of Nutrition and Health
    • /
    • 제44권6호
    • /
    • pp.465-473
    • /
    • 2011
  • Dietary fatty acids are under intense research to identify anti-atherogenic mechanisms, so we investigated green tea powder (GT) as a protector against atherogenesis originating from lipid peroxidation such as 4-hydroxynonemal (4-HNE) and malondialdehyde (MDA) in different dietary fatty acid-treated apo E KO mice. Growth rate and dietary efficiency were lower in apo E KO mice with or without LA compared to wild type. Plasma total cholesterol (TC) and triacylglycerol (TG) did not correspond to values in other tissues, but TG in heart tissue decreased significantly by GT after linoleic acid (LA) or docosahexaenoic acid (DHA) was administered. LA induced apoptosis as evidenced by changes in aorta morphology and immunohistochemistry. Lipid peroxides (LPO) was increased in apo E KO mice with or without LA corresponding to the accumulation of 4-HNE or MDA in the proximal aorta above the atria. GT consumption tended to reduce the primary causal mechanism of atherogenic phenomena such as oxidizability in both LA and DHA treated atherogenic mice. A high polyunsaturated fatty acids (PUFA) diet involved the changes on stress-induced apoptotic signaling by increasing caspase 3, cytochrome c, and nuclear factor-${\kappa}B$ in the heart tissue, but decreasing the bcl-2 protein. However, GT remarkably reduced the expression of apoptotic signaling, in contrast to the PUFA diet. Therefore, the potential of GT as an anti-atherosclerotic dietary antioxidant was tested in this study.

Ginseng total saponin attenuates myocardial injury via anti-oxidative and anti-inflammatory properties

  • Aravinthan, Adithan;Kim, Jong Han;Antonisamy, Paulrayer;Kang, Chang-Won;Choi, Jonghee;Kim, Nam Soo;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • 제39권3호
    • /
    • pp.206-212
    • /
    • 2015
  • Background: Ginseng total saponin (GTS) contains various ginsenosides. These ginsenosides are widely used for treating cardiovascular diseases in Asian communities. The aim of this study was to study the effects of GTS on cardiac injury after global ischemia and reperfusion (I/R) in isolated guinea pig hearts. Methods: Animals were subjected to normothermic ischemia for 60 minutes, followed by 120 minutes of reperfusion. GTS significantly increased aortic flow, coronary flow, and cardiac output. Moreover, GTS significantly increased left ventricular systolic pressure and the maximal rate of contraction ($+dP/dt_{max}$) and relaxation ($-dP/dt_{max}$). In addition, GTS has been shown to ameliorate electrocardiographic changes such as the QRS complex, QT interval, and RR interval. Results: GTS significantly suppressed the biochemical parameters (i.e., lactate dehydrogenase, creatine kinase-MB fraction, and cardiac troponin I levels) and normalized the oxidative stress markers (i.e., malondialdehyde, glutathione, and nitrite). In addition, GTS also markedly inhibits the expression of interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, and nuclear factor-${\kappa}B$, and improves the expression of IL-10 in cardiac tissue. Conclusion: These data indicate that GTS mitigates myocardial damage by modulating the biochemical and oxidative stress related to cardiac I/R injury.

Socioeconomic impact of traditional Korean medicine, Pyeongwee-San (KMP6) as an anti-allergic inflammatory drug

  • Song, Young-Hoon;Nam, Sun-Young;Choi, Young-Jin;Kim, Jeong-Hwa;Kim, Young-Sick;Jeong, Hyun-Ja
    • 셀메드
    • /
    • 제2권3호
    • /
    • pp.29.1-29.9
    • /
    • 2012
  • The prevalence of allergic disease has been increasing over the past few decades in the majority of Western industrialized nations. There are some socioeconomic disparities regarding allergic disease status and management. Pyeongwee-San (KMP6) is Korean medicine for the treatment of gastrointestinal tract disease. It is known that KMP6 has an improving effect on the spleen and stomach functions in traditional Korean medical theory. Here, we hypothesized that KMP6 could be used to regulate the inflammatory reaction. We show the molecular mechanisms of Pyeongwee-San (KMP6) on inflammatory reactions. A molecular docking simulation showed that hesperidin, component of KMP6, regulate the enzymatic activity by interaction in the active site of caspase-1. KMP6 control the activity of caspase-1 in activated human mast cell line (HMC-1 cells). KMP6 reduced the expression of receptor interacting protein (RIP)-2 in HMC-1 cells. Thymic stromal lymphopoietin protein production and mRNA expression were inhibited by KMP6. In the activated HMC-1 cells, KMP6 suppressed the activation of mitogen-ativated protein kinase and nuclear factor-kappaB. In addition, KMP6 significantly inhibited the expression of inflammatory cytokines. Our findings indicate that KMP6 may attenuate allergic reactions via the regulation of caspase-1/RIP-2 signaling pathway. These studies will help advance the social welfare system.