• Title/Summary/Keyword: factor decomposition

Search Result 265, Processing Time 0.034 seconds

Change in the photocatalytic activity of ZnO nanoparticles by additive H2O

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Choi, Jin-Woo;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.285-285
    • /
    • 2010
  • Zinc oxide (ZnO) is a direct band gap semiconductor with 3.37 eV, which has in a hexagonal wurtzite structure. ZnO is a good candidate for a photocatalyst because it has physical and chemical stability, high oxidative properties, and absorbs of ultraviolet light. During ZnO is irradiated by UV light, redox (reduction and oxidation) reactions will occur on the ZnO surface, generating the radicals O2- and OH. These two powerful oxidizing agents have been proven to be effective in decomposition of harmful organic materials, converting them into CO2 and H2O. Therefore, we assume that oxygen on the surface of ZnO is a very important factor in the photocatalytic activities of ZnO nanoparticles. Recently, ZnO nanoparticles are studied in various application fields by many researchers. Photocatalyst research is progressing much in various application fields. But the ZnO nanoparticles have disadvantage that is unstable in water in comparison titanium dioxide (TiO2). The Zn(OH)2 was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoaprticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their phtocatalytic activity changes. The characterization of ZnO nanoparticles were analyzed by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and BET test. Also we defined the photocatalytic activity of ZnO nanoparticles using UV-VIS Spectroscopy. And we explained changing of photocatalytic activity after the water treatment using X-ray Photoelectron Spectroscopy (XPS).

  • PDF

Numerical Study on the Injector Shape and Location of Urea-SCR System of Heavy-duty Diesel Engine for Preventing $NH_3$ Slip (대형 디젤엔진용 SCR 시스템의 암모니아 슬립 억제를 위한 인젝터의 형상 및 위치에 관한 수치적 연구)

  • Jeong Soo-Jin;Lee Sang Jin;Kim Woo-Seung;Lee Chun Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.68-78
    • /
    • 2006
  • In the past few years, considerable efforts have been directed towards the further development of Urea-SCR(selective catalytic reduction) technique for diesel-driven vehicle. Although urea possesses considerable advantages over Ammonia$(NH_3)$ in terms of toxicity and handling, its necessary decomposition into Ammonia and carbon dioxide complicates the DeNOx process. Moreover, a mobile SCR system has only a short distance between engine exhaust and the catalyst entrance. Hence, this leads to not enough residence times of urea, and therefore evaporation and thermolysis cannot be completed at the catalyst entrance. This may cause high secondary emissions of Ammonia and isocyanic acid from the reducing agent and also leads to the fact that a considerable section of the catalyst may be misused for the purely thermal steps of water evaporation and thermolysis of urea. Hence the key factor to implementation of SCR technology on automobile is fast thermolysis, good mixing of Ammonia and gas, and reducing Ammonia slip. In this context, this study performs three-dimensional numerical simulation of urea injection of heavy-duty diesel engine under various injection pressure, injector locations and number of injector hole. This study employs Eulerian-Lagrangian approach to consider break-up, evaporation and heat and mass-transfer between droplet and exhaust gas with considering thermolysis and the turbulence dispersion effect of droplet. The SCR-monolith brick has been treated as porous medium. The effect of location and number of hole of urea injector on the uniformity of Ammonia concentration distribution and the amount of water at the entrance of SCR-monolith has been examined in detail under various injection pressures. The present results show useful guidelines for the optimum design of urea injector for reducing Ammonia slip and improving DeNOx performance.

Parallel lProcessing of Pre-conditioned Navier-Stokes Code on the Myrinet and Fast-Ethernet PC Cluster (Myrinet과 Fast-Ethernet PC Cluster에서 예조건화 Navier-Stokes코드의 병렬처리)

  • Lee, G.S.;Kim, M.H.;Choi, J.Y.;Kim, K.S.;Kim, S.L.;Jeung, I.S.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.21-30
    • /
    • 2002
  • A preconditioned Navier-Stokes code was parallelized by the domain decomposition technique, and the accuracy of the parallelized code was verified through a comparison with the result of a sequential code and experimental data. Parallel performance of the code was examined on a Myrinet based PC-cluster and a Fast-Ethernet system. Speed-up ratio was examined as a major performance parameter depending on the number of processor and the network communication topology. In this test, Myrinet system shows a superior parallel performance to the Fast-Ethernet system as was expected. A test for the dependency on problem size also shows that network communication speed in a crucial factor for parallel performance, and the Myrinet based PC-cluster is a plausible candidate for high performance parallel computing system.

Control of Algal Blooms in Eutrophic Water Using Porous Dolomite Granules

  • Huh, Jae-Hoon;Choi, Young-Hoon;Lee, Shin Haeng;Cheong, Sun Hee;Ahn, Ji Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.108-113
    • /
    • 2017
  • The use of aluminum-based coagulants in water pretreatment is being carefully considered because aluminum exposure is a risk factor for the onset of Alzheimer's disease. Lightly burned-dolomite kiln dust (LB-DKD) was evaluated as an alternative coagulant because it contains high levels of the healthful minerals calcium and magnesium. An organic pore forming agent (OPFA) was incorporated to prepare porous granules after OPFA removal through a thermal decomposition process. A spray drying method was used to produce uniform and reproducible spherical granules with low density, since fine dolomite particles have irregular agglomeration behavior in the hydration reaction. The use of fine dolomite powder and different porosity granules led to a visible color change in raw algae (RA) containing water, from dark green to transparent colorlessness. Also, dolomite powders and granules exhibited a mean removal efficiency of 48.3% in total nitrogen (T-N), a gradual increase in the removal efficiency of total phosphorus (T-P) as granule porosity increased. We demonstrate that porous dolomite granules can improve the settling time and water quality in summer seasons for the emergent treatment of excessive algal blooms in eutrophic water.

Simplified procedure for seismic demands assessment of structures

  • Chikh, Benazouz;Mehani, Youcef;Leblouba, Moussa
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.455-473
    • /
    • 2016
  • Methods for the seismic demands evaluation of structures require iterative procedures. Many studies dealt with the development of different inelastic spectra with the aim to simplify the evaluation of inelastic deformations and performance of structures. Recently, the concept of inelastic spectra has been adopted in the global scheme of the Performance-Based Seismic Design (PBSD) through Capacity-Spectrum Method (CSM). For instance, the Modal Pushover Analysis (MPA) has been proved to provide accurate results for inelastic buildings to a similar degree of accuracy than the Response Spectrum Analysis (RSA) in estimating peak response for elastic buildings. In this paper, a simplified nonlinear procedure for evaluation of the seismic demand of structures is proposed with its applicability to multi-degree-of-freedom (MDOF) systems. The basic concept is to write the equation of motion of (MDOF) system into series of normal modes based on an inelastic modal decomposition in terms of ductility factor. The accuracy of the proposed procedure is verified against the Nonlinear Time History Analysis (NL-THA) results and Uncoupled Modal Response History Analysis (UMRHA) of a 9-story steel building subjected to El-Centro 1940 (N/S) as a first application. The comparison shows that the new theoretical approach is capable to provide accurate peak response with those obtained when using the NL-THA analysis. After that, a simplified nonlinear spectral analysis is proposed and illustrated by examples in order to describe inelastic response spectra and to relate it to the capacity curve (Pushover curve) by a new parameter of control, called normalized yield strength coefficient (${\eta}$). In the second application, the proposed procedure is verified against the NL-THA analysis results of two buildings for 80 selected real ground motions.

Development of Welding Flux and Process for Prevention of Cold Cracking in SAW Weld Metal (잠호용접부 균열방지를 위한 용접 플락스 및 시공기법 개발)

  • Choi, Kee-Young;Kim, Chan;Kim, Young-Pil
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.118-127
    • /
    • 2007
  • SAW(Submerged Arc Welding) process is generally applied to a wide range of welding area in the fabrication of steel structure. This process has a good characteristic properties such as the high quality of welds and the high deposition rates, but in case of welding on a thick steel plate, it also has higher cold crack susceptibility than that of a thin steel plate. The purpose of this research is to find the main factor of crack generation and clarify the countermeasure for crack prevention, and then establish the optimum welding condition in a heavy thick steel plate. The results of this study are as follows, 1. The cause of crack generation is found the diffusible hydrogen penetrated into weld metal by decomposition of the remained moisture in SAW flux during welding. 2. For the removal of diffusible hydrogen, the raw materials of SAW flux are to be dehydrated at the high temperature in the initial manufacturing stage. 3. Mechanical properties of weld metal welded with the dehydrated SAW flux were evaluated very excellent, furthermore the weld metal has been proved to have low diffusible hydrogen content with 3.1ml /100g. 4. The weldability and quality welded with thick steel plates were improved by establishing the new optimum welding condition.

  • PDF

Study on a Creative Fashion Design Development Process through Idea Classification (아이디어 발상 유형화를 통한 창의적 패션 디자인 전개 프로세스 연구)

  • Kim, Yoon-Kyoung;Park, Hye-Won
    • Journal of the Korean Society of Costume
    • /
    • v.60 no.9
    • /
    • pp.95-105
    • /
    • 2010
  • The purpose of this study is in allowing thinking about the design development process which is more towards the visual and perceptional aspects related to the form structure by more diverse methods by typology of idea generation. To accomplish such goal, researches in the psychology, pedagogy, engineering, and consilient studies as well as related precedent researches and reference data in architecture, promotion, industrial design, and other art fields and fashion designs are collected and analyzed to see the study trend. In addition, in the content analysis method based on such, the idea generation was classified into types in consideration of relevancy, usefulness, and suitability with fashion. First, a concentrated thinking of a limited space is a method of leading an optimal design by focusing on solving the cause of a problem within a space which generates the problem. Second, plan thinking per section of structure decomposition is a method of dismantling the design problems per organization, thinking type, factor, and characteristic into sub-modules to re-interpret and re-organize the problems in various aspects. Third, an associated thinking through interpreting relationships among vocabularies is a method of selecting the marginal languages that allow a person to come up with concrete forms and the key words related to fashion to import the characteristics and attributes of the marginal languages and thematic relationship between the two terms to search the relevancy. Lastly, the free integrated thinking of language extension is a method of groping integration between other fields and fashion by free integration among the extended terms by extending the vocabularies through inferring metaphorical expressions founded upon individual's memories or knowledge concepts regarding theme words that do not allow concrete forms to come up.

An Extraction of Detailed Isoconversional Kinetic Scheme of Energetic Materials using Isothermal DSC (등전환법과 등온 DSC를 이용한 고에너지 물질의 정밀 반응모델 개발)

  • Kim, Yoocheon;Park, Jungsu;Kwon, Kuktae;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.46-55
    • /
    • 2016
  • The kinetic analysis of a heavily aluminized cyclotrimethylene-trinitramine(RDX) is conducted using differential scanning calorimetry(DSC), and the Friedman isoconversional method is applied to the DSC experimental data. The pre-exponential factor and activation energy are extracted as a function of the product mass fraction. The extracted kinetic scheme does not assume multiple chemical steps to describe the complex response of energetic materials; instead, a set of multiple Arrhenius factors is constructed based on the local progress of the exothermic reaction. The resulting reaction kinetic scheme is applied to two thermal decomposition tests for validating the reactive flow response of a heavily aluminized RDX. The results support applicability of the present model to practical thermal explosion systems.

Effect of Soil Respiration on Light Fraction-C and N Availability in Soil Applied with Organic Matter

  • Ko, Byong-Gu;Lee, Chang-Hoon;Kim, Myung-Sook;Kim, Gun-Yeob;Park, Seong-Jin;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.510-516
    • /
    • 2016
  • Soil respiration has been recognized as a key factor of the change of organic matter and fertility due to the carbon and nitrogen mineralization. In this study, we evaluated the effect of soil respiration on the light fraction-C and inorganic N content depending on temperature in soil applied with organic matter. Soil respiration was calculated by using total $CO_2$ flux released from soil applied with $2Mg\;ha^{-1}$ of rice straw compost and rye for 8 weeks incubation at 15, 25, $35^{\circ}C$ under incubation test. After incubation test, light fraction and inorganic N content were investigated. Rye application dramatically increased soil respiration with increasing temperature. $Q_{10}$ value of rye application was 1.69, which was higher 27% than that of rice straw compost application. Light-C and $NO_3-N$ contents were negatively correlated to soil respiration. Light-C in rye application more decreased than that in rice straw compost with temperature levels. These results indicate that temperature sensitivity of soil respiration could affect soil organic mater content and N availability in soil due to carbon availability. Also, light fraction would be useful indicator to evaluate decomposition rate of organic matter in soil under a short-term test.

Molecular Geometries and Electronic Structures of Methyl Pyropheophorbide-a and (Cationic) Tropolonyl Methyl Pyropheophorbides: DFT Calculation

  • Kim, Na-Ri;Kim, Su-Jin;Kim, Jin-Dong;Huh, Do-Sung;Shim, Young-Key;Choe, Sang-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.205-213
    • /
    • 2009
  • This study reports on the geometry optimizations and electronic structure calculations for methyl pyropheophorbide (MPPa), tropolonyl methyl pyropheophorbides (TMPPa, ITMPPa), and cationic tropolonyl methyl pyropheophorbides ($TMPPa^+{{\cdot}BF_4}^-,\;ITMPPa^+{{\cdot}BF_4}^-,\;TMPPa^+,\;and\;ITMPPa^+$) using Local Spin Density Approximation (LSDA/ 6-31G*) and the Restricted Hatree-Fock (RHF/6-31G*) level theory. From the calculated results, we found that substituted cationic tropolonyl groups have larger structural effects than those of substituted neutral tropolonyl groups. The order of structural change effects is $ITMPPa^+ > ITMPPa^+{{\cdot}BF_4}^-$ > ITMPPa, as a result of the isopropyl group. Because it is an electron-releasing group, the substituted isopropyl group electronic effect on a 3-position tropolone increases the Highest Occupied Molecular Orbital and Lowest Unoccupied Molecular Orbital (HOMO-LUMO) energy gap. It was constituted that the larger the cationic characters of these photosensitizers, the smaller the HOMOLUMO band gaps are. The orbital energies of the cationic systems and the ions are stronger than those of a neutral system because of a strong electrostatic interaction. However, this stabilization of orbital energies are counteracted by the distortion of chlorin macrocycle, which results in a large destabilization of chlorin-based compound HOMOs and smaller destabilization of LUMOs as shown in TMPPa (ITMPPa), $TMPPa^+{{\cdot}BF_4}^- (ITMPPa^+{{\cdot}BF_4}^-),\;and\;TMPPa^+\;(ITMPPa^+)$ of Figure 6 and Table 6-7. These results are in reasonable agreement with normal-coordinate structural decomposition (NSD) results. The HOMO-LUMO gap is an important factor to consider in the development of photodynamic therapy (PDT).