Browse > Article
http://dx.doi.org/10.5012/bkcs.2009.30.1.205

Molecular Geometries and Electronic Structures of Methyl Pyropheophorbide-a and (Cationic) Tropolonyl Methyl Pyropheophorbides: DFT Calculation  

Kim, Na-Ri (Department of Chemistry, Institute of Basic Science, Inje University)
Kim, Su-Jin (Department of Chemistry, Institute of Basic Science, Inje University)
Kim, Jin-Dong (Department of Chemistry, Institute of Basic Science, Inje University)
Huh, Do-Sung (Department of Chemistry, Institute of Basic Science, Inje University)
Shim, Young-Key (School of Nano Engineering, Inje University)
Choe, Sang-Joon (Department of Chemistry, Institute of Basic Science, Inje University)
Publication Information
Abstract
This study reports on the geometry optimizations and electronic structure calculations for methyl pyropheophorbide (MPPa), tropolonyl methyl pyropheophorbides (TMPPa, ITMPPa), and cationic tropolonyl methyl pyropheophorbides ($TMPPa^+{{\cdot}BF_4}^-,\;ITMPPa^+{{\cdot}BF_4}^-,\;TMPPa^+,\;and\;ITMPPa^+$) using Local Spin Density Approximation (LSDA/ 6-31G*) and the Restricted Hatree-Fock (RHF/6-31G*) level theory. From the calculated results, we found that substituted cationic tropolonyl groups have larger structural effects than those of substituted neutral tropolonyl groups. The order of structural change effects is $ITMPPa^+ > ITMPPa^+{{\cdot}BF_4}^-$ > ITMPPa, as a result of the isopropyl group. Because it is an electron-releasing group, the substituted isopropyl group electronic effect on a 3-position tropolone increases the Highest Occupied Molecular Orbital and Lowest Unoccupied Molecular Orbital (HOMO-LUMO) energy gap. It was constituted that the larger the cationic characters of these photosensitizers, the smaller the HOMOLUMO band gaps are. The orbital energies of the cationic systems and the ions are stronger than those of a neutral system because of a strong electrostatic interaction. However, this stabilization of orbital energies are counteracted by the distortion of chlorin macrocycle, which results in a large destabilization of chlorin-based compound HOMOs and smaller destabilization of LUMOs as shown in TMPPa (ITMPPa), $TMPPa^+{{\cdot}BF_4}^- (ITMPPa^+{{\cdot}BF_4}^-),\;and\;TMPPa^+\;(ITMPPa^+)$ of Figure 6 and Table 6-7. These results are in reasonable agreement with normal-coordinate structural decomposition (NSD) results. The HOMO-LUMO gap is an important factor to consider in the development of photodynamic therapy (PDT).
Keywords
Tropolonyl methyl pyropheophorbides; Cationic tropolonyl methyl pyropheophorbides; Photodynamic therapy (PDT); DFT;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Ghosh, A. In The Porphyrin Handbook; Kardish, K. M.; Smith, K. M.; Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 7, p 1.
2 Shelnutt, J. A. In The Porphyrin Handbook; Kardish, K. M.; Smith, K. M.; Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 7, p 167.
3 Pandey, R. K.; Zheng, G. In The Porphyrin Handbook; Kardish, K. M.; Smith, K. M.; Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 6, p 158.
4 Villanueva, A. J. Phtochem. Phorobiol. 1993, 18, 295
5 Ali, H.; van Lier, E. J. Chem. Rev. 1999, 99, 2379   DOI   ScienceOn
6 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Peterson, G. A.; Montgometry, J. A.; Raghavacari, K.; Al- Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. J.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. L.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Wallingford, CT, 2005꣮⨀ࠋ
7 Gouterman, M. J. Mol. Spectrosc. 1961, 6, 138   DOI   ScienceOn
8 Takeuchi, T.; Gray, H. B.; Goddard III, W. A. J. Am. Chem. Soc. 1994, 116, 9730   DOI   ScienceOn
9 Wang, Z.; Day, P. N.; Pachter, R. J. Chem. Phys. 1998, 108, 2504   DOI   ScienceOn
10 Park, S. H.; Kim, S. J.; Kim, J. D.; Park, S.; Huh, D. S.; Shim, Y. K.; Choe, S. J. Bull. Korean Chem. Soc. 2008, 29, 1141   DOI   ScienceOn
11 Garbo, G. M.; Fingar, V. H.; Wieman, T. J.; Noakes III, E. B.; Haydon, P. S.; Cerrito, P. B.; Kessel, D. H.; Morgan, A. R. Photochem. Photobiol. 1998, 68, 561   DOI   ScienceOn
12 Webber, J.; Leeson, B.; Fromm, D.; Kessel, D. J. Photochem. Photobiol. 2005, 78, 135   DOI   ScienceOn
13 Caminos, D.; Spesia, B.; Durantini, E. Photochem. Photobiol. Sci. 2006, 5, 56   DOI   ScienceOn
14 Jasat, A.; Dolphin, D. Chem. Rev. 1997, 97, 2267   DOI   ScienceOn
15 Ravanat, J.; Cade, J.; Araki, K.; Toma, H. E.; Medeiros, M. H. G.; Mascio, P. D. Photochem. Photobiol. 1998, 68, 698
16 Guiaev, A. B.; Leontis, N. B. Biochem. 1999, 38, 15425   DOI   ScienceOn
17 Bold, B.; Barkhuu, B.; Lee, W.; Shim, Y. K. Bull. Korean Chem. Soc. 2008, 29, 237   DOI   ScienceOn
18 Barkhuu, B. Develoment and Activity Tests of New Cationic Chlorins for Photodynamic Cancer Therapy, Thesis for Ph. D; Inje University, Korea, 2007
19 Jentzen, W.; Ma, J. G.; Shelnutt, J. A. Biophys. J. 1998, 74, 753   DOI   ScienceOn
20 Shelnutt, J. A.; Song, X. Z.; Ma, J. G.; Jia, S. L.; Jentzen, W.; Medforth, C. J. Chem. Soc. Rev. 1998, 27, 31   DOI   ScienceOn
21 Fischer, M.; Templeton, D.; Zalkin, A.; Calvin, M. J. Am. Chem. Soc. 1972, 94, 3613   DOI
22 Zhao, Y.; Truhlar, D. Acc. Chem. Res. 2008, 41, 157   DOI   ScienceOn
23 DeRosa, M. R.; Crutchley, R. J. Coord. Chem. Rev. 2002, 233 -234, 351
24 Trust, T. J. Antimicrob. Agents Chemother. 1975, 7, 500   DOI   ScienceOn
25 Nitzan, Y.; Ashkenazi, H. Curr. Microbiol. 2001, 42, 408   DOI   ScienceOn