• Title/Summary/Keyword: facial features extraction

Search Result 94, Processing Time 0.033 seconds

Study on the Practical 3D Facial Diagnosis using Kinect Sensors (키넥트 센서를 이용한 실용적인 3차원 안면 진단기 연구)

  • Jang, Jun-Su;Do, Jun-Hyeong;Kim, Jang-Woong;Nam, Jiho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.218-222
    • /
    • 2015
  • Facial diagnosis based on quantitative facial features has been studied in many Korean medicine fields, especially in Sasang constitutional medicine. By the rapid growing of 3D measuring technology, generic and cheap 3D sensors, such as Microsoft Kinect, is popular in many research fields. In this study, the possibility of using Kinect in facial diagnosis is examined. We introduce the development of facial feature extraction system and verify its accuracy and repeatability of measurement. Furthermore, we compare Sasang constitution diagnosis results between DSLR-based system and the developed Kinect-based system. A Sasang constitution diagnosis algorithm applied in the experiment was previously developed by a huge database containing 2D facial images acquired by DSLR cameras. Interrater reliability analysis result shows almost perfect agreement (Kappa = 0.818) between the two systems. This means that Kinect can be utilized to the diagnosis algorithm, even though it was originally derived from 2D facial image data. We conclude that Kinect can be successfully applicable to practical facial diagnosis.

A Recognition Framework for Facial Expression by Expression HMM and Posterior Probability (표정 HMM과 사후 확률을 이용한 얼굴 표정 인식 프레임워크)

  • Kim, Jin-Ok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.3
    • /
    • pp.284-291
    • /
    • 2005
  • I propose a framework for detecting, recognizing and classifying facial features based on learned expression patterns. The framework recognizes facial expressions by using PCA and expression HMM(EHMM) which is Hidden Markov Model (HMM) approach to represent the spatial information and the temporal dynamics of the time varying visual expression patterns. Because the low level spatial feature extraction is fused with the temporal analysis, a unified spatio-temporal approach of HMM to common detection, tracking and classification problems is effective. The proposed recognition framework is accomplished by applying posterior probability between current visual observations and previous visual evidences. Consequently, the framework shows accurate and robust results of recognition on as well simple expressions as basic 6 facial feature patterns. The method allows us to perform a set of important tasks such as facial-expression recognition, HCI and key-frame extraction.

Comparison Analysis of Four Face Swapping Models for Interactive Media Platform COX (인터랙티브 미디어 플랫폼 콕스에 제공될 4가지 얼굴 변형 기술의 비교분석)

  • Jeon, Ho-Beom;Ko, Hyun-kwan;Lee, Seon-Gyeong;Song, Bok-Deuk;Kim, Chae-Kyu;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.535-546
    • /
    • 2019
  • Recently, there have been a lot of researches on the whole face replacement system, but it is not easy to obtain stable results due to various attitudes, angles and facial diversity. To produce a natural synthesis result when replacing the face shown in the video image, technologies such as face area detection, feature extraction, face alignment, face area segmentation, 3D attitude adjustment and facial transposition should all operate at a precise level. And each technology must be able to be interdependently combined. The results of our analysis show that the difficulty of implementing the technology and contribution to the system in facial replacement technology has increased in facial feature point extraction and facial alignment technology. On the other hand, the difficulty of the facial transposition technique and the three-dimensional posture adjustment technique were low, but showed the need for development. In this paper, we propose four facial replacement models such as 2-D Faceswap, OpenPose, Deekfake, and Cycle GAN, which are suitable for the Cox platform. These models have the following features; i.e. these models include a suitable model for front face pose image conversion, face pose image with active body movement, and face movement with right and left side by 15 degrees, Generative Adversarial Network.

Frontal Face Region Extraction & Features Extraction for Ocular Inspection (망진을 위한 정면 얼굴 영역 및 특징 요소 추출)

  • Cho Dong-Uk;Kim Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.585-592
    • /
    • 2005
  • One of the most important things in the researches on diseases is to attach more importance to prevention of a disease and preservation of health than to treatment of a disease, also to foods rather than to medicines. In this context, the most significant concern in examining a patient is to find the presence of disease, and, if any, to diaguose the type of disease, after which a pharmacotherapy is followed. In this paper, various diagnosis methods of Oriental medicines are discussed. And ocular inspection, the most important method among the 4 disease diagnoses of Oriental medicines, is studied. Observing a person's shape and color has been the major method for ocular inspection, which usually has been dependent upon doctor's intuition as of these days. We are developing an automatic system which provides objective basic data for ocular inspection. As the first stage, we applied the signal processing techniques to automatic feature extraction of faces for ocular inspection. Firstly, facial regions are extracted from the point of frontal view, which was followed by extraction of their features. The experiment applied to 20 persons showed that frontal face regions are perfectly extracted, as well as their features, such as eyes, eyebrows, noses and mouths. Future work will seek to address the issues of morphological operation for a few unfinished extraction results, such as combined hair and eyebrows.

Micro-Expression Recognition Base on Optical Flow Features and Improved MobileNetV2

  • Xu, Wei;Zheng, Hao;Yang, Zhongxue;Yang, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.1981-1995
    • /
    • 2021
  • When a person tries to conceal emotions, real emotions will manifest themselves in the form of micro-expressions. Research on facial micro-expression recognition is still extremely challenging in the field of pattern recognition. This is because it is difficult to implement the best feature extraction method to cope with micro-expressions with small changes and short duration. Most methods are based on hand-crafted features to extract subtle facial movements. In this study, we introduce a method that incorporates optical flow and deep learning. First, we take out the onset frame and the apex frame from each video sequence. Then, the motion features between these two frames are extracted using the optical flow method. Finally, the features are inputted into an improved MobileNetV2 model, where SVM is applied to classify expressions. In order to evaluate the effectiveness of the method, we conduct experiments on the public spontaneous micro-expression database CASME II. Under the condition of applying the leave-one-subject-out cross-validation method, the recognition accuracy rate reaches 53.01%, and the F-score reaches 0.5231. The results show that the proposed method can significantly improve the micro-expression recognition performance.

Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm (Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출)

  • 신영숙
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • This Paper extracts the edge of main components of face with Gator wavelets transformation in facial expression images. FCM(Fuzzy C-Means) clustering algorithm then extracts the representative feature points of low dimensionality from the edge extracted in neutral face. The feature-points of the neutral face is used as a template to extract the feature-points of facial expression images. To match point to Point feature points on an expression face against each feature point on a neutral face, it consists of two steps using a dynamic linking model, which are called the coarse mapping and the fine mapping. This paper presents an automatic extraction of feature-points by dynamic linking model based on Gabor wavelets and fuzzy C-means(FCM) algorithm. The result of this study was applied to extract features automatically in facial expression recognition based on dimension[1].

  • PDF

Improvement of Active Shape Model for Detecting Face Features in iOS Platform (iOS 플랫폼에서 Active Shape Model 개선을 통한 얼굴 특징 검출)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.61-65
    • /
    • 2016
  • Facial feature detection is a fundamental function in the field of computer vision such as security, bio-metrics, 3D modeling, and face recognition. There are many algorithms for the function, active shape model is one of the most popular local texture models. This paper addresses issues related to face detection, and implements an efficient extraction algorithm for extracting the facial feature points to use on iOS platform. In this paper, we extend the original ASM algorithm to improve its performance by four modifications. First, to detect a face and to initialize the shape model, we apply a face detection API provided from iOS CoreImage framework. Second, we construct a weighted local structure model for landmarks to utilize the edge points of the face contour. Third, we build a modified model definition and fitting more landmarks than the classical ASM. And last, we extend and build two-dimensional profile model for detecting faces within input images. The proposed algorithm is evaluated on experimental test set containing over 500 face images, and found to successfully extract facial feature points, clearly outperforming the original ASM.

Appearance Information Extraction and Shading for Realistic Caricature Generation (실사형 캐리커처 생성을 위한 형태 정보 추출 및 음영 함성)

  • Park, Yeon-Chool;Oh, Hae-Seok
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.257-266
    • /
    • 2004
  • This paper proposes caricature generation system that uses shading mechanism that extracts textural features of face. Using this method, we can get more realistic caricature. Since this system If vector-based, the generated character's face has no size limit and constraint. so it is available to transform the shape freely and to apply various facial expressions to 2D face. Moreover, owing to the vector file's advantage, It can be used in mobile environment as small file size This paper presents methods that generate vector-based face, create shade and synthesize the shade with the vector face.

Robust Facial Expression Recognition Based on Local Directional Pattern

  • Jabid, Taskeed;Kabir, Md. Hasanul;Chae, Oksam
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.784-794
    • /
    • 2010
  • Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance-based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well-known machine learning methods, template matching and support vector machine, are used for classification using the Cohn-Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance-based feature descriptors.

Facial Feature Localization from 3D Face Image using Adjacent Depth Differences (인접 부위의 깊이 차를 이용한 3차원 얼굴 영상의 특징 추출)

  • 김익동;심재창
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.617-624
    • /
    • 2004
  • This paper describes a new facial feature localization method that uses Adjacent Depth Differences(ADD) in 3D facial surface. In general, human recognize the extent of deepness or shallowness of region relatively, in depth, by comparing the neighboring depth information among regions of an object. The larger the depth difference between regions shows, the easier one can recognize each region. Using this principal, facial feature extraction will be easier, more reliable and speedy. 3D range images are used as input images. And ADD are obtained by differencing two range values, which are separated at a distance coordinate, both in horizontal and vertical directions. ADD and input image are analyzed to extract facial features, then localized a nose region, which is the most prominent feature in 3D facial surface, effectively and accurately.