• 제목/요약/키워드: facial features

검색결과 642건 처리시간 0.024초

모바일 기기에서의 얼굴 특징점 및 선형 보간법 기반 시선 추적 (Gaze Detection Based on Facial Features and Linear Interpolation on Mobile Devices)

  • 고유진;박강령
    • 한국멀티미디어학회논문지
    • /
    • 제12권8호
    • /
    • pp.1089-1098
    • /
    • 2009
  • 최근에 인간컴퓨터 상호작용 분야에서 사용자의 시선 위치를 파악하여 더욱 편리한 입력 장치를 개발하고자 하는 연구가 많이 진행되고 있다. 기존의 대부분 연구들은 큰 모니터를 사용하는 컴퓨터 환경에서 시선 추적 시스템을 개발하였다. 최근 이동단말기의 사용 증대로 이동 중에 시선 추적에 의한 단말기 제어의 필요성이 증대되고 있다. 이에 본 연구에서는 이동형 컴퓨터 (Ultra-Mobile PC) 및 컴퓨터 내장 카메라를 이용하여 사용자의 얼굴을 추적하고, 얼굴내의 특징점의 위치를 능동외관모델 (Active Appearance Model)을 기반으로 추적하는 연구를 수행하였다. 본 논문의 독창성은 기존 연구와는 달리 소형 화면을 가지는 이동 단말기에서 사용자의 시선 위치를 추적할 수 있는 방법을 제안한 점과 정밀한 얼굴 특징점 검출을 위하여 능동외관모델을 사용한 점이다. 또한 사용자의 초기 캘리브레이션시 얻어진 특징값을 기반으로, 입력 특징값들을 정규화 함으로써, Z거리에 따라 시선 위치 정확도가 영향을 받지 않는다는 점이다. 실험결과, 약 1.77도의 시선 오차를 발생하였으나, 추가적인 얼굴 움직임에 의한 마우스 움직임 기능으로 이러한 시선 오차는 더욱 줄일 수 있음을 알 수 있었다.

  • PDF

자폐성향과 공감-체계화능력 간의 관계 (The relationship between autistic features and empathizing-systemizing traits)

  • 조경자;김정기
    • 감성과학
    • /
    • 제14권2호
    • /
    • pp.245-256
    • /
    • 2011
  • 본 연구에서는 대학생을 대상으로 자폐적 성향과 공감하기 및 체계화하기능력간의 관계를 알아보고자 하였다. 연구 1에서는 대학생 355명을 대상으로 자폐스펙트럼(AQ) 척도, 공감하기(EQ) 척도, 체계화하기(SQ-R) 척도를 실시하였다. 그 결과 AQ 점수는 EQ 점수, D 점수(각 개인의 공감하기 수준과 체계화하기 수준의 상대적 차이)와는 부적상관을 보였으나, SQ-R 점수와는 통계적으로 유의한 차이를 보이지 않았다. 이 결과는 자폐성향이 강할수록 공감하기 능력은 떨어지나, 체계화하기 능력과는 관계가 없음을 보여준다. 연구 2에서는 연구 1의 실험참가자의 AQ 점수에 근거하여 자폐적 성향이 높은 집단과 그렇지 않은 집단을 분류한 후 자폐적성향(유, 무), 얼굴제시영역(얼굴전체, 눈, 입), 정서유형(기본, 복합)에 따라 얼굴표정읽기 능력이 어떻게 달라지는지 알아보았다. 그 결과 자폐적 성향이 없는 집단에 비해 자폐적 성향이 높은 집단이, 기본정서보다는 복합정서에서 과제 정확률이 더 떨어졌고 얼굴전체 영역 눈 영역, 입 영역 순으로 과제 수행이 낮았는데, 특히 눈 조건에서 자폐적 성향이 높은 집단이 그렇지 않은 집단에 비해 정서읽기능력이 떨어지는 결과를 보였다. 본 연구의 결과는 공감능력 얼굴표정읽기능력이 자폐적 성향과 관계가 있음을 시사한다.

  • PDF

Computerized Sunnybrook facial grading scale (SBface) application for facial paralysis evaluation

  • Jirawatnotai, Supasid;Jomkoh, Pojanan;Voravitvet, Tsz Yin;Tirakotai, Wuttipong;Somboonsap, Natthawut
    • Archives of Plastic Surgery
    • /
    • 제48권3호
    • /
    • pp.269-277
    • /
    • 2021
  • Background The Sunnybrook facial grading scale is a comprehensive scale for the evaluation of facial paralysis patients. Its results greatly depend on subjective input. This study aimed to develop and validate an automated Sunnybrook facial grading scale (SBface) to more objectively assess disfigurement due to facial paralysis. Methods An application compatible with iOS version 11.0 and up was developed. The software automatically detected facial features in standardized photographs and generated scores following the Sunnybrook facial grading scale. Photographic data from 30 unilateral facial paralysis patients were randomly sampled for validation. Intrarater reliability was tested by conducting two identical tests at a 2-week interval. Interrater reliability was tested between the software and three facial nerve clinicians. Results A beta version of the SBface application was tested. Intrarater reliability showed excellent congruence between the two tests. Moderate to strong positive correlations were found between the software and an otolaryngologist, including the total scores of the three individual software domains and composite scores. However, 74.4% (29/39) of the subdomain items showed low to zero correlation with the human raters (κ<0.2). The correlations between the human raters showed good congruence for most of the total and composite scores, with 10.3% (4/39) of the subdomain items failing to correspond (κ<0.2). Conclusions The SBface application is efficient and accurate for evaluating the degree of facial paralysis based on the Sunnybrook facial grading scale. However, correlations of the software-derived results with those of human raters are limited by the software algorithm and the raters' inconsistency.

구안와사(口眼喎斜)의 형상의학적 치료 (Treatment of Facial Palsy in Hyangsang Medicine)

  • 강경화;은종원;이용태
    • 동의생리병리학회지
    • /
    • 제18권6호
    • /
    • pp.1585-1597
    • /
    • 2004
  • Facial palsy is a common disease in clinic, which can be classified into central and peripheral according to the causes. The central facial palsy is caused by cerebral vascular accident, brain tumor, etc. The peripheral facial palsy comes from cold stimulus on face, regional infection of virus, suppurative tympanitis, inflammation on mastoid process, pathological teeth, trauma like cranial fracture, and so forth, They have distinctive features in diagnosis. While the central facial palsy is followed by hemiplegia and articulation disorder, the peripheral one by the disappearance of wrinkles on the forehead and rising of eyeball on paralyzed side when closing the eyes. Most of the cases in this thesis are peripheral palsy. The social classes and ages of the patients are so various that the treatments must be applied from various standpoints. The statistical data shows that the functional weakness of the whole body is the fundamental condition of the facial palsy. Therefore it is very important to find and the exact pathology and treatment appropriate for Hyungsang of the patients.

Analysis of 3D Facial Shapes of Female Adult to Improve Face Mask Fit

  • Choi, Jin;Do, Wol Hee
    • 한국의류산업학회지
    • /
    • 제22권6호
    • /
    • pp.826-833
    • /
    • 2020
  • When it is necessary to wear masks for long periods, such as during the current COVID-19 pandemic, the essential function of masks to prevent contamination (or transmission to others) as well as comfortableness are important. For this study, we used three-dimensional (3D) facial measurements of adult women to compile basic face shape data for designing comfortable and effective masks. This study analyzed the 3D facial data of 127 subjects in their 20s to 30s of the 6th Size Korea. Factor analysis of the survey data produced seven factors that formed the composition of adult female faces. These factors combined to produce three facial types: square (long face and a large lower middle face), oval (smallest central and lower body in the middle), and triangle (short face with a small central and lower large nose). These types reflect that the facial types of adult women show the differences in the nose angle, nose length, bitragion-subnasal arc, bitragion-menton arc. Therefore, properly fitting masks for fine dust particle filtration require 3D customization of a mask's breathing apparatus to fit differently shaped central and lower face parts that interfere with mask fit.

영상정보를 활용한 소셜 미디어상에서의 가짜 뉴스 탐지: 유튜브를 중심으로 (Fake News Detection on Social Media using Video Information: Focused on YouTube)

  • 장윤호;최병구
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제32권2호
    • /
    • pp.87-108
    • /
    • 2023
  • Purpose The main purpose of this study is to improve fake news detection performance by using video information to overcome the limitations of extant text- and image-oriented studies that do not reflect the latest news consumption trend. Design/methodology/approach This study collected video clips and related information including news scripts, speakers' facial expression, and video metadata from YouTube to develop fake news detection model. Based on the collected data, seven combinations of related information (i.e. scripts, video metadata, facial expression, scripts and video metadata, scripts and facial expression, and scripts, video metadata, and facial expression) were used as an input for taining and evaluation. The input data was analyzed using six models such as support vector machine and deep neural network. The area under the curve(AUC) was used to evaluate the performance of classification model. Findings The results showed that the ACU and accuracy values of three features combination (scripts, video metadata, and facial expression) were the highest in logistic regression, naïve bayes, and deep neural network models. This result implied that the fake news detection could be improved by using video information(video metadata and facial expression). Sample size of this study was relatively small. The generalizablity of the results would be enhanced with a larger sample size.

얼굴의 3차원 위치 및 움직임 추정에 의한 시선 위치 추적 (Facial Gaze Detection by Estimating Three Dimensional Positional Movements)

  • 박강령;김재희
    • 대한전자공학회논문지SP
    • /
    • 제39권3호
    • /
    • pp.23-35
    • /
    • 2002
  • 시선 위치 추적이란 모니터상에 사용자가 쳐다보고 있는 지점을 파악해 내는 기술이다 이 논문에서는 컴퓨터 비젼 방법을 이용하여 사용자가 모니터 상에 어느 지점을 쳐다보고 있는지를 파악(시선 위치 추적)하는 새로운 방법을 제안한다. 시선위치를 파악하기 위해 본 논문에서는 얼굴 영역 및 얼굴 특징점(양 눈, 양 콧구멍, 입술 끝점 등)을 2차원 카메라 영상으로부터 추출하였으며, 이들의 움직임으로부터 카메라 보정 및 매개변수 추정 방법등을 이용하여 초기 3차원 위치를 추정해 내었다. 이후 모니터 상의 한 지점을 쳐다보기 위해 사용자가 얼굴을 움직이는 경우 이러한 얼굴의 3차원 움직임 량 역시 자동으로 추정하였다. 이로부터 변화된 얼굴 특징점의 3차원 위치를 계산해 낼 수 있었으며, 이를 바탕으로 모니터 상의 시선 위치를 구하였다. 실험 결과, 19인치 모니터상의 임의의 지점을 사용자가 쳐다보았을 때, 약 2.01인치의 시선 위치에러 성능을 얻었다.

특징점기반 Gabor 및 LBP 피쳐를 이용한 얼굴 인식 (Face Recognition by Fiducial Points Based Gabor and LBP Features)

  • 김진호
    • 한국콘텐츠학회논문지
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2013
  • 얼굴 영상 데이터베이스에서 제공하는 눈 좌표에 의존해서 부분 자동 얼굴 인식 알고리즘을 설계 구현하면 실 환경 얼굴 인식 시스템에서는 눈 좌표 추출 알고리즘의 정확도에 따라 인식 성능이 달라질 수 있다. 본 논문에서는 얼굴의 눈, 코, 입 및 윤곽선 정보를 바탕으로 설정한 특징점 기반의 얼굴 모델 그래프를 생성하여 얼굴 영상에 정합시키고 각 특징점에서 Gabor 및 LBP 피쳐를 추출해서 결합하는 방식의 완전 자동 얼굴 인식 알고리즘을 제안하였다. 본 알고리즘에서는 완전 자동으로 얼굴 영상에 얼굴 모델 그래프를 맞출 뿐만 아니라 기존의 Gabor 피쳐에 LBP 피쳐를 추가함으로써 인식 성능을 극대화 시킬 수 있도록 하였다. 제안한 알고리즘을 FERET 데이터베이스에 적용해 본 결과 1,000명 이상의 얼굴을 실시간으로 인식할 수 있었고 각 데이터 집합에 대해서 우수한 인식 성능을 얻을 수 있었다.

얼굴인식 성능 향상을 위한 얼굴 전역 및 지역 특징 기반 앙상블 압축 심층합성곱신경망 모델 제안 (Compressed Ensemble of Deep Convolutional Neural Networks with Global and Local Facial Features for Improved Face Recognition)

  • 윤경신;최재영
    • 한국멀티미디어학회논문지
    • /
    • 제23권8호
    • /
    • pp.1019-1029
    • /
    • 2020
  • In this paper, we propose a novel knowledge distillation algorithm to create an compressed deep ensemble network coupled with the combined use of local and global features of face images. In order to transfer the capability of high-level recognition performances of the ensemble deep networks to a single deep network, the probability for class prediction, which is the softmax output of the ensemble network, is used as soft target for training a single deep network. By applying the knowledge distillation algorithm, the local feature informations obtained by training the deep ensemble network using facial subregions of the face image as input are transmitted to a single deep network to create a so-called compressed ensemble DCNN. The experimental results demonstrate that our proposed compressed ensemble deep network can maintain the recognition performance of the complex ensemble deep networks and is superior to the recognition performance of a single deep network. In addition, our proposed method can significantly reduce the storage(memory) space and execution time, compared to the conventional ensemble deep networks developed for face recognition.

Micro-Expression Recognition Base on Optical Flow Features and Improved MobileNetV2

  • Xu, Wei;Zheng, Hao;Yang, Zhongxue;Yang, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.1981-1995
    • /
    • 2021
  • When a person tries to conceal emotions, real emotions will manifest themselves in the form of micro-expressions. Research on facial micro-expression recognition is still extremely challenging in the field of pattern recognition. This is because it is difficult to implement the best feature extraction method to cope with micro-expressions with small changes and short duration. Most methods are based on hand-crafted features to extract subtle facial movements. In this study, we introduce a method that incorporates optical flow and deep learning. First, we take out the onset frame and the apex frame from each video sequence. Then, the motion features between these two frames are extracted using the optical flow method. Finally, the features are inputted into an improved MobileNetV2 model, where SVM is applied to classify expressions. In order to evaluate the effectiveness of the method, we conduct experiments on the public spontaneous micro-expression database CASME II. Under the condition of applying the leave-one-subject-out cross-validation method, the recognition accuracy rate reaches 53.01%, and the F-score reaches 0.5231. The results show that the proposed method can significantly improve the micro-expression recognition performance.