Journal of Information Science Theory and Practice
/
제7권2호
/
pp.32-39
/
2019
A convolutional neural network (CNN) has been widely used in facial expression recognition (FER) because it can automatically learn discriminative appearance features from an expression image. To make full use of its discriminating capability, this paper suggests a simple but effective method for CNN based FER. Specifically, instead of an original expression image that contains facial appearance only, the expression image with facial geometry visualization is used as input to CNN. In this way, geometric and appearance features could be simultaneously learned, making CNN more discriminative for FER. A simple CNN extension is also presented in this paper, aiming to utilize geometric expression change derived from an expression image sequence. Experimental results on two public datasets (CK+ and MMI) show that CNN using facial geometry visualization clearly outperforms the conventional CNN using facial appearance only.
본 논문에서는 얼굴의 표정 변화에 영향을 주는 해부학에 기반한 18개의 근육군쌍을 바탕으로 하여 얼굴 표정 애니메이션을 위한 근육의 움직임을 조합할 수 있도록 하였다. 개인의 이미지에 맞춰 메쉬를 변형하여 표준 모델을 만든 다음, 사실감을 높이기 위해 개인 얼굴의 정면과 측면 2장의 이미지를 이용하여 메쉬에 매핑하였다. 얼굴의 표정 생성을 애니메이션 할 수 있는 원동력이 되는 근육 모델은 Waters의 근육모델을 수정하여 사용하였다. 이러한 방법을 사용하여 텍스처가 입혀진 변형된 얼굴을 생성하였다. 또한, Ekman이 제안한 6가지 얼굴 표정을 애니메이션 하였다.
This paper presents an emotion recognition and its expression system of an intelligent robot like a home robot or a service robot. Emotion recognition method in the robot is used by a facial image. We use a motion and a position of many facial features. apply a tracking algorithm to recognize a moving user in the mobile robot and eliminate a skin color of a hand and a background without a facial region by using the facial region detecting algorithm in objecting user image. After normalizer operations are the image enlarge or reduction by distance of the detecting facial region and the image revolution transformation by an angel of a face, the mobile robot can object the facial image of a fixing size. And materialize a multi feature selection algorithm to enable robot to recognize an emotion of user. In this paper, used a multi layer perceptron of Artificial Neural Network(ANN) as a pattern recognition art, and a Back Propagation(BP) algorithm as a learning algorithm. Emotion of user that robot recognized is expressed as a graphic LCD. At this time, change two coordinates as the number of times of emotion expressed in ANN, and change a parameter of facial elements(eyes, eyebrows, mouth) as the change of two coordinates. By materializing the system, expressed the complex emotion of human as the avatar of LCD.
얼굴의 표정은 얼굴의 구성요소같은 기하학적 정보와 조명이나 주름 같은 세부적인 정보들로 표현된다. 얼굴 표정은 기하학적 변형만으로는 실감적인 표정을 생성하기 힘들기 때문에 기하학적 변형과 더불어 텍스처 같은 세부적인 정보도 함께 변형해야만 실감적인 표현을 할 수 있다. 표정비율이미지 (Expression Ratio Image)같은 얼굴 텍스처의 세부적인 정보를 변형하기 위한 기존 방법들은 조명에 따른 피부색의 변화를 정확히 표현할 수 없는 단점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 서로 다른 조명 조건에서도 실감적인 표정 텍스처 정보를 적용할 수 있는 비선형 피부색 모델 기반의 표정 합성방법을 제안한다. 제안된 방법은 동적 외양 모델을 이용한 자동적인 얼굴 특징 추출과 와핑을 통한 표정 변형 단계, 비선형 피부색 변화 모델을 이용한 표정 생성 단계, 유클리디 거리 변환 (Euclidean Distance Transform)에 의해 계산된 혼합 비율을 사용한 원본 얼굴 영상과 생성된 표정의 합성 등 총 3 단계로 구성된다. 실험결과는 제안된 방법이 다양한 조명조건에서도 자연스럽고 실감적인 표정을 표현한다는 것을 보인다.
본 연구는 얼굴자극의 검사단계 표정변화와 검사 지연시간, 그리고 배경변화가 얼굴재인에 미치는 효과를 검증하기 위해 수행되었다. 실험 1에서는 학습단계에서 부정 표정 얼굴을 학습하고 검사단계에서 동일한 얼굴의 부정 표정과 중성 표정얼굴에 대한 재인 검사가 실시되었다. 실험 2에서는 학습단계에서 부정 표정 얼굴을 학습하고 검사단계에서 부정 표정과 긍정 표정얼굴에 대한 재인 검사가 실시되었다. 실험 3에서는 학습단계에서 중성 표정 얼굴을 학습하고, 검사단계에서 부정 표정과 중성 표정 얼굴에 대한 재인 검사가 실시되었다. 세 실험 모두 참가자들은 즉시 검사와 지연 검사 조건에 할당되었고, 재인검사에서 목표 얼굴자극들은 배경이 일치 조건으로 또한 불일치 조건으로 제시되었다. 실험 1과 실험2 모두에서 부적 표정에 대한 재인율이 높았다. 실험 3에서 중성 표정에 대한 재인율이 높았다. 즉, 세 개실험 모두에서 표정 일치 효과가 나타났다. 학습단계에서 제시된 얼굴 표정의 정서와는 상관없이 검사단계에서 표정이 학습단계와 일치할 때 얼굴 재인율은 증가하였다. 또한 표정 변화에 따른 효과는 배경 변화에 따라 상이하게 나타났다. 본 연구 결과로 얼굴은 표정이 달라지면 기억하기 힘들며, 배경의 변화와 시간 지연에 따라 영향을 받는 다는 점을 확인하였다.
본 논문에서는 가변 크기 블록 기반의 새로운 얼굴 특징 표현 방법을 제안한다. 기존 외형 기반의 얼굴 표정 인식 방법들은 얼굴 특징을 표현하기 위해 얼굴 영상 전체를 균일한 블록으로 분할하는 uniform grid 방법을 사용하는데, 이는 다음 두가지 문제를 가지고 있다. 얼굴 이외의 배경이 포함될 수 있어 표정을 구분하는 데 방해 요소로 작용하고, 각 블록에 포함된 얼굴의 특징은 입력영상 내 얼굴의 위치, 크기 및 방위에 따라 달라질 수 있다. 본 논문에서는 이러한 문제를 해결하기 위해 유의미한 표정변화가 가장 잘 나타내는 블록의 크기와 위치를 결정하는 가변 크기 블록 방법을 제안한다. 이를 위해 얼굴의 특정점을 추출하여 표정인식에 기여도가 높은 얼굴부위에 대하여 블록 설정을 위한 기준점을 결정하고 AdaBoost 방법을 이용하여 각 얼굴부위에 대한 최적의 블록 크기를 결정하는 방법을 제시한다. 제안된 방법의 성능평가를 위해 LDTP를 이용하여 표정특징벡터를 생성하고 SVM 기반의 표정 인식 시스템을 구성하였다. 실험 결과 제안된 방법이 기존의 uniform grid 기반 방법보다 우수함을 확인하였다. 특히, 제안된 방법이 형태와 방위 등의 변화가 상대적으로 큰 MMI 데이터베이스에서 기존의 방법보다 상대적으로 우수한 성능을 보여줌으로써 입력 환경의 변화에 보다 효과적으로 적응할 수 있음을 확인하였다.
본 논문은 얼굴의 표정 변화를 통해 감정을 분석하는 방법으로 조현병의 초기 증상을 스스로 인지할 수 있는 감정 트레이닝 프레임워크를 제안한다. 먼저, Microsoft의 Emotion API를 이용하여 캡처된 얼굴 표정의 사진으로부터 감정값을 얻고, 피크 분석 기반 표준편차로 시간에 따라 변화하는 얼굴 표정의 미묘한 차이를 인식해 감정 상태를 각각 분류한다. 그리하여 Ekman이 제안한 여섯 가지 기본 감정 상태에 반하는 감정들의 정서 및 표현능력이 결핍된 부분에 대해 분석하고, 그 값을 이미지 색상 변환 프레임워크에 통합시켜 사용자 스스로 감정의 변화를 쉽게 인지하고 트레이닝 할 수 있도록 하는 것이 최종목적이다.
Facial expression was an important communication methods. In oriental medicine, according to the emotion the face has changed shape and difference occurs in physiology and pathology. To verify such a theory, we studied the correlation between emotional facial expressions and meridian and collateral flow. The facial region divided by meridian, outer brow was Gallbladder meridian, inner brow was Bladder meridian, medial canthus was Bladder meridian, lateral canthus was Gallbladder meridian, upper eyelid was Bladder meridian, lower eyelid was Stomach meridian, central cheeks was Stomach meridian, lateral cheeks was Small intestine meridian, upper and lower lips, lip corner, chin were Small and Large intestine meridian. Meridian and collateral associated with happiness was six. This proves happiness is a high importance on facial expression. Meridian and collateral associated with anger was five. Meridian and Collateral associated with fear and sadness was four. This shows fear and sadness are a low importance on facial expression than different emotion. Based on yang meridian which originally descending flow in the body, the ratio of anterograde and retrograde were happiness 3:4, angry 2:5, sadness 5:3, fear 4:1. Based on face of the meridian flow, the ratio of anterograde and retrograde were happiness 5:2, angry 3:4, sadness 3:5, fear 4:1. We found out that practical meridian and collateral flow change by emotion does not correspond to the expected meridian and collateral flow change by emotion.
This paper presents a facial expression transformation algorithm and drawing rule generation algolithm for a portrait drawing robot which was developed for the '93 Taejeon EXPO. The developed algorithm was mainly focused on the robust automatic generation of robot programs with the consideration that the drawing robot should work without any limitation of the age, sex or race for the persons. In order to give more demonstratin effects, the facial expression change of the pictured person was performed.
Understanding and classification of the human's emotion play an important tasks in interacting with human and machine communication systems. This paper proposes a novel emotion recognition method by extracting facial keypoints, which is able to understand and classify the human emotion, using active Appearance Model and the proposed classification model of the facial features. The existing appearance model scheme takes an expression of variations, which is calculated by the proposed classification model according to the change of human facial expression. The proposed method classifies four basic emotions (normal, happy, sad and angry). To evaluate the performance of the proposed method, we assess the ratio of success with common datasets, and we achieve the best 93% accuracy, average 82.2% in facial emotion recognition. The results show that the proposed method effectively performed well over the emotion recognition, compared to the existing schemes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.