• 제목/요약/키워드: face area detection

검색결과 168건 처리시간 0.026초

인터랙티브 미디어 플랫폼 콕스에 제공될 4가지 얼굴 변형 기술의 비교분석 (Comparison Analysis of Four Face Swapping Models for Interactive Media Platform COX)

  • 전호범;고현관;이선경;송복득;김채규;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제22권5호
    • /
    • pp.535-546
    • /
    • 2019
  • Recently, there have been a lot of researches on the whole face replacement system, but it is not easy to obtain stable results due to various attitudes, angles and facial diversity. To produce a natural synthesis result when replacing the face shown in the video image, technologies such as face area detection, feature extraction, face alignment, face area segmentation, 3D attitude adjustment and facial transposition should all operate at a precise level. And each technology must be able to be interdependently combined. The results of our analysis show that the difficulty of implementing the technology and contribution to the system in facial replacement technology has increased in facial feature point extraction and facial alignment technology. On the other hand, the difficulty of the facial transposition technique and the three-dimensional posture adjustment technique were low, but showed the need for development. In this paper, we propose four facial replacement models such as 2-D Faceswap, OpenPose, Deekfake, and Cycle GAN, which are suitable for the Cox platform. These models have the following features; i.e. these models include a suitable model for front face pose image conversion, face pose image with active body movement, and face movement with right and left side by 15 degrees, Generative Adversarial Network.

얼굴 특징 정보를 이용한 얼굴 방향성 검출 (Detection of Facial Direction using Facial Features)

  • 박지숙;동지연
    • 인터넷정보학회논문지
    • /
    • 제4권6호
    • /
    • pp.57-67
    • /
    • 2003
  • 최근 멀티미디어 처리 기술과 광학 기술의 발달과 더불어 얼굴 영상 정보를 이용한 응용 시스템에 대한 관심이 증대되고 있다. 기존의 얼굴 정보와 관련한 연구들은 대부분 정면 영상을 해석하여 사람을 식별하거나 영상의 표정을 분석하는데 초점을 두어왔으며 임의의 얼굴 영상의 방향성에 대한 연구는 부족한 실정이다. 특히, 한대의 카메라로 연속 촬영된 이미지들을 이용하는 기존의 방향성 검출 기법에서는 초기 영상이 정면 영상이어야 하는 제약점을 가진다. 본 논문에서는 얼굴의 특징 정보를 이용하여 임의의 얼굴 영상의 방항성을 검출하는 기법을 제안한다. 제안된 기법에서는 두 눈과 입술의 특징점을 기반으로 얼굴 사다리꼴을 정의하고, 얼굴 사다리꼴의 좌$.$우 면적을 비교한 통계 데이터를 이용하여 얼굴 영상의 좌.우 방향성을 계산하는 방향성 함수를 정의한다. 제안된 얼굴 영상의 검출 기법은 얼굴 영상의 방향성에 따라 얼굴 영상의 좌$.$우 여백을 안정적으로 설정하는 영상의 자동 배치 응용에 효과적으로 활용될 수 있다.

  • PDF

쿠다를 사용하여 GPU 리소스를 분배하는 지능형 얼굴 인식 및 트래킹 시스템 (Intelligent Face Recognition and Tracking System to Distribute GPU Resources using CUDA)

  • 김재형;이승호
    • 전기전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.281-288
    • /
    • 2018
  • 본 논문에서는 쿠다(CUDA)를 사용하여 GPU 리소스를 분배하는 지능형 얼굴 인식 및 트래킹 시스템을 제안한다. 제안한 시스템은 GPU 리소스를 최적의 상태로 분배하는 GPU 할당 알고리즘, 딥러닝을 이용한 얼굴 영역 검출, 딥러닝을 이용한 얼굴 인식, 실시간 얼굴 트래킹, PTZ 카메라 제어 등의 5단계로 구성되어진다. 멀티 GPU 리소스를 최적의 상태로 분배하는 GPU 할당 알고리즘은 고정적으로 스레드에 GPU를 할당하는 방식과 달리 GPU의 활성화 정도에 따라 유동적으로 GPU 리소스를 분배한다. 따라서 안정적이고 효율적인 멀티 GPU 사용을 가능하게 하는 특징이 있다. 제안된 시스템에 대한 성능을 평가하기 위하여 리소스 분배를 하지 않은 시스템과 제안한 시스템을 비교한 결과, 리소스를 분배하지 않은 시스템은 불안정한 동작을 보이는 반면에 제안한 시스템에서는 안정적으로 구동됨으로서 효율적인 리소스 사용을 보였다. 따라서 제안된 시스템의 효용성이 입증되었다.

Facial Recognition Algorithm Based on Edge Detection and Discrete Wavelet Transform

  • Chang, Min-Hyuk;Oh, Mi-Suk;Lim, Chun-Hwan;Ahmad, Muhammad-Bilal;Park, Jong-An
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.283-288
    • /
    • 2001
  • In this paper, we proposed a method for extracting facial characteristics of human being in an image. Given a pair of gray level sample images taken with and without human being, the face of human being is segmented from the image. Noise in the input images is removed with the help of Gaussian filters. Edge maps are found of the two input images. The binary edge differential image is obtained from the difference of the two input edge maps. A mask for face detection is made from the process of erosion followed by dilation on the resulting binary edge differential image. This mask is used to extract the human being from the two input image sequences. Features of face are extracted from the segmented image. An effective recognition system using the discrete wave let transform (DWT) is used for recognition. For extracting the facial features, such as eyebrows, eyes, nose and mouth, edge detector is applied on the segmented face image. The area of eye and the center of face are found from horizontal and vertical components of the edge map of the segmented image. other facial features are obtained from edge information of the image. The characteristic vectors are extrated from DWT of the segmented face image. These characteristic vectors are normalized between +1 and -1, and are used as input vectors for the neural network. Simulation results show recognition rate of 100% on the learned system, and about 92% on the test images.

  • PDF

이미지 자동배치를 위한 얼굴 방향성 검출 (Detection of Facial Direction for Automatic Image Arrangement)

  • 동지연;박지숙;이환용
    • Journal of Information Technology Applications and Management
    • /
    • 제10권4호
    • /
    • pp.135-147
    • /
    • 2003
  • With the development of multimedia and optical technologies, application systems with facial features hare been increased the interests of researchers, recently. The previous research efforts in face processing mainly use the frontal images in order to recognize human face visually and to extract the facial expression. However, applications, such as image database systems which support queries based on the facial direction and image arrangement systems which place facial images automatically on digital albums, deal with the directional characteristics of a face. In this paper, we propose a method to detect facial directions by using facial features. In the proposed method, the facial trapezoid is defined by detecting points for eyes and a lower lip. Then, the facial direction formula, which calculates the right and left facial direction, is defined by the statistical data about the ratio of the right and left area in facial trapezoids. The proposed method can give an accurate estimate of horizontal rotation of a face within an error tolerance of $\pm1.31$ degree and takes an average execution time of 3.16 sec.

  • PDF

기계 학습 알고리즘을 이용한 효과적인 대상 영역 분할 (Effective Detection of Target Region Using a Machine Learning Algorithm)

  • 장석우;이경주;정명희
    • 한국산학기술학회논문지
    • /
    • 제19권5호
    • /
    • pp.697-704
    • /
    • 2018
  • 다양한 종류의 컬러 영상 콘텐츠에 포함되어 있는 사람의 얼굴 영역은 다른 사람들과 특정인을 구별해 줄 수 있는 개인의 정보에 해당하므로, 입력된 컬러 영상으로부터 가려지지 않은 사람의 얼굴 영역들을 정확하게 검출하는 작업은 매우 중요하다. 본 논문에서는 입력되는 컬러 영상으로부터 기계 학습 알고리즘 중의 하나인 딥러닝 알고리즘을 이용하여 사람의 얼굴 영역을 정확하게 검출하는 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 RGB 색상 모델로 입력되는 영상을 $YC_bC_r$ 색상 모델로 변경한 다음, 기 학습된 타원형의 피부 색상 분포 모델을 활용하여 다른 영역들은 제거하고 사람의 피부 영역만을 먼저 분할한다. 그런 다음, CNN 모델 기반의 딥러닝 알고리즘을 적용하여 이전 단계에서 검출된 피부 영역 내에서 사람의 얼굴 영역을 강인하게 검출한다. 실험 결과에서는 제안된 방법이 입력되는 다양한 컬러 영상으로부터 사람의 얼굴 영역들을 기존의 방법에 비해 보다 효율적으로 분할한다는 것을 보여준다. 본 논문에서 제안된 얼굴 영역 검출 방법은 영상 보안, 물체 인식 및 추적, 얼굴 인식 등과 같은 멀티미디어 및 형태 인식과 관련된 실제적인 응용 분야에서 매우 유용하게 활용될 것으로 기대된다.

상관관계에 기반한 가려진 얼굴 영상 검출 및 복원 (Detection and Recovery of Occluded Face Images Based on Correlation)

  • 이지은;곽노준
    • 대한전자공학회논문지SP
    • /
    • 제48권5호
    • /
    • pp.72-83
    • /
    • 2011
  • 본 논문에서는 화소들 간의 상관관계를 이용하여 가려진 얼굴 영상을 검출하고 복원하는 방법을 제안한다. 본 논문의 학습 단계에서는 기존에 이용된 주성분 분석법( PCA )의 변환 행렬 대신 상관계수를 계산하고, 테스트 단계에서는 학습 단계에서 구한 상관계수를 이용하여 가려진 얼굴 영역 검출 과정과 복원 과정을 수행한다. 검출된 영상과 복원된 영상은 실험을 통해 기존 방법과 비교한다. 실험 결과, 상관관계 방법에 의해 검출된 영상은 기존 주성분 분석법을 이용한 방법보다 가려진 얼굴 영역 및 주변 영역의 잡음이 적음을 확인하였다. 또한 복원된 얼굴 영상에서는 영상의 뭉개지는 현상이 줄어들었으며, 복원된 얼굴 영상의 가려진 부분과 가려지지 않은 부분과의 경계가 보다 매끄럽게 연결되는 것을 확인하였다.

Adaptive Face Mask Detection System based on Scene Complexity Analysis

  • Kang, Jaeyong;Gwak, Jeonghwan
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권5호
    • /
    • pp.1-8
    • /
    • 2021
  • 코로나바이러스-19(COVID-19)의 대유행에 따라 전 세계 수많은 확진자가 발생하고 있으며 국민을 불안에 떨게 하고 있다. 바이러스 감염 확산을 방지하기 위해서는 마스크를 제대로 착용하는 것이 필수적이지만 몇몇 사람들은 마스크를 쓰지 않거나 제대로 착용하지 않고 있다. 본 논문에서는 영상 이미지에서의 효율적인 마스크 감지 시스템을 제안한다. 제안 방법은 우선 입력 이미지의 모든 얼굴의 영역을 YOLOv5를 사용하여 감지하고 감지된 얼굴의 수에 따라 3가지의 장면 복잡도(Simple, Moderate, Complex) 중 하나로 분류한다. 그 후 장면 복잡도에 따라 3가지 ResNet(ResNet-18, 50, 101) 중 하나를 기반으로 한 Faster-RCNN을 사용하여 얼굴 부위를 감지하고 마스크를 제대로 착용하였는지 식별한다. 공개 마스크 감지 데이터셋을 활용하여 실험한 결과 제안한 장면 복잡도 기반 적응적인 모델이 다른 모델에 비해 가장 성능이 뛰어남을 확인하였다.

효율적인 얼굴 검출을 위한 지역적 켄텍스트 기반의 특징 추출 (Local Context based Feature Extraction for Efficient Face Detection)

  • 이필규;서영철;신학철;심연
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권1호
    • /
    • pp.185-191
    • /
    • 2011
  • 최근들어 영상보안 시스템에 관한 관심이 높아지고 있다. 영상으로부터 객체를 검출하고, 객체가 사람인지를 판별하며, 인식하는 기술이 다방면으로 활용되고 있다. 따라서 본 논문에서는 이러한 객체를 검색하기 위한 적응적인 방법을 제안하며, 이를 위하여 지역적 컨텍스트 기반의 얼굴 특징 검출 방법을 제안한다. 가보 번치를 이용하여 검출하는 이와 함께 베이지안 검출 방법을 이용한 특징점 보정에 따른 특징 검색 방법을 설명한다. 전체적인 시스템은 영상에서 오브젝트 영역을 검색하고, 지역적 컨텍스트 기반의 얼굴 검출, 특징 추출 방법을 적용하여 시스템의 성능을 높인다.

Hyaluronic Acid Filler Injection Guided by Doppler Ultrasound

  • Won Lee
    • Archives of Plastic Surgery
    • /
    • 제50권4호
    • /
    • pp.348-353
    • /
    • 2023
  • Doppler ultrasound can be used to detect almost all arteries of the face before injecting the hyaluronic acid (HA) filler. The relatively more dangerous sites of filler injection are the glabellar wrinkle, forehead, temple, nose, and nasolabial fold area, and it is recommended to map the vasculature of these areas by Doppler ultrasound before performing filler injection. The Doppler ultrasound detection method is included as a video. Internal carotid arterial branches, the supratrochlear, supraorbital, and dorsal nasal arteries, and external carotid arterial branches, the superficial temporal and facial arteries, are very important arteries when injecting HA filler; thus, Doppler ultrasound detection is recommended.