• Title/Summary/Keyword: fabrication process

Search Result 4,367, Processing Time 0.036 seconds

Estimation of Qualities and Inference of Operating Conditions for Optimization of Wafer Fabrication Using Artificial Intelligent Methods

  • Bae, Hyeon;Kim, Sung-Shin;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1101-1106
    • /
    • 2005
  • The purpose of this study was to develop a process management system to manage ingot fabrication and the quality of the ingot. The ingot is the first manufactured material of wafers. Operating data (trace parameters) were collected on-line but quality data (measurement parameters) were measured by sampling inspection. The quality parameters were applied to evaluate the quality. Thus, preprocessing was necessary to extract useful information from the quality data. First, statistical methods were employed for data generation, and then modeling was accomplished, using the generated data, to improve the performance of the models. The function of the models is to predict the quality corresponding to the control parameters. The dynamic polynomial neural network (DPNN) was used for data modeling that used the ingot fabrication data.

  • PDF

Polymer Based Slim Tactile Sensor: Optimal Design and New Fabrication Method (폴리머 기반 슬림형 촉각센서의 최적 설계 및 새로운 공정 방법)

  • Lee, Jeong-Il;Sato, Kazuo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.131-134
    • /
    • 2011
  • In this study, we propose an optimal design and new fabrication method for a slim tactile sensor. Slim tactile sensor can detect 3-axial forces and has suitable flexibility for intelligent robot fingers. To amplify the contact signal, a unique table-shaped structure was attempted. A new layer-by-layer fabrication process for polymer micromachining that can make a 3D structure by using a sacrificial layer was proposed. A table-shaped epoxy sensing plate with four legs was built on top of a flexible polymer substrate. The plate can convert an applied force to a concentrated stress. Normal and shear forces can be detected by combining responses from metal strain gauges embedded in the polymer substrate. The optimal positions of the strain gauges are determined using the strain distribution obtained from finite element analysis.

Fabrication of Ni master for the replication of planar optical devices by LIGA process (LIGA 공정을 이용한 평면형 광소자용 Ni 마스터 제작)

  • Kim, Jin-Tae;Jeong, Myung-Yung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.945-949
    • /
    • 2003
  • LIGA(Lithographie Galvanoformung Abformung), a fabrication method for the production of microstructrues with a high aspect ratio, is now playing an important role in a fabrication of polymeric optical waveguide device as the replication processes have been developed such as hot embossing and injection molding. The present report deals with the fabrication of Ni master used for the replication of multi-mode polymeric optical waveguide. With the basic technological features in the sequence of the LIGA technique, we fabricated Ni master with 12 channel microstructures of $100\;{\times}\;100{\mu}m\;^2{\times}\;60mm$, and achieved an accuracy of ${\pm}1\;{\mu}m$. Manufactured polymeric optical wavegude with the same using hot embossing process has also the same accuracy and approved its mass production capability.

  • PDF

IC Worst Case Analysis Considered Random Fluctuations on Fabrication Process (제조 공정상 랜덤 특성을 고려한 IC 최악조건 해석)

  • 박상봉;박노경;전흥우;문대철;차균현
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.6
    • /
    • pp.637-646
    • /
    • 1988
  • The CMOS physical parameters are extracted using by processing models in fabrication steps, processing parameters, fabrication disturbances, control parameters. Statistical CMOS process and device simulator is proposed to evaluate the effect of inherent fluctuations in IC fabrication. Using this simulator, we perform worst case analysis in terms of statistically independent disturbances and compare this proposed method to Monte Carlo method, previous Worst Case method. And simulation results with this proposed method are more accurate than the past worst case analysis. This package is written in C language and runs on a IBM PC AT(OPUS).

  • PDF

Fabrication techniques of superconducting magnet system for MRI in KERI (한국전력연구소 초전도 MRI 마그네트 시스템 제작 기술)

  • Ko, Rock-Kil;Bae, Joon-Han;Sim, Ki-Deok;Jin, Hong-Beam;Lee, Eon-Yong;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.597-599
    • /
    • 2000
  • Fabrication of superconducting magnet system needs high-degree technical know-how, which require not only a lot of investment of man-power and finance but also that of long time. Until now, we have met many technical problems and it have been solved by trial and error. In fact, we have got chance to come into contact with researches into the magnet design for MRI easily but did not contact with the process of fabrication and the techniques. We introduced process of fabrication and techniques for MRI magnet system until before the superconducting magnet combine with cryostat in Korea Electrotechnology Research Institute.

  • PDF

Micro-pattern Fabrication of Amorphous Alloy by Laser Beam Machining (비정질 합금의 마이크로 패턴 레이저 가공)

  • Kim, Haan;Park, Jong Wuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.77-83
    • /
    • 2022
  • Amorphous alloys exhibit excellent mechanical properties; therefore, application technology development is being attempted in various fields. However, industrial use of application technology is limited owing to the limitations in fabrication. In this study, micropattern fabrication of an amorphous alloy was conducted using laser beam machining. Although microhole fabrication is possible without the deformation of the amorphous phase through nanosecond pulsed laser beam machining, there are limitations in the generation of recast layers and spatters. In cover plate laser beam machining (c-LBM), a cover plate is used to reduce the thermal deformation and processing area. Therefore, it is possible to fabricate holes at the level of several micrometers. In this study, it was confirmed that recast layers are hardly generated in c-LBM. Furthermore, square-shaped micropatterns were successfully fabricated using c-LBM.

The Characteristics of Corporate Growth and Innovation in the Materials, Components, and Equipments Sectors of Korean Display Industrial Value Chain (한국 디스플레이산업 가치사슬별 소재부품 및 장비기업의 성장과 혁신 특성)

  • Kim, Karpsoo
    • Journal of Korea Technology Innovation Society
    • /
    • v.20 no.1
    • /
    • pp.205-238
    • /
    • 2017
  • Display industry in Korea has been rapidly developing over 20 years, now taking the top-class leading position in the world. Nevertheless, many previous studies have mainly focused on major panel set makers. To overcome the drawbacks, this study focuses on supplier companies in the upstream of display industry such as materials, components, and equipments sectors. The research method used in this study is an industry value chain perspective combined with architectural innovation approach. Display panel is produced through fabrication process and modular process, each having a different characteristics of process architecture. This research figured out that there are quite a different development characteristics between materials and components suppliers and equipment suppliers. The number and revenue of materials and components suppliers were quite larger than equipments suppliers. However, the former has been growing mainly in the field of modular process, having a very weak position in the field of fabrication process. On the contrary, equipments suppliers have been showing a continuously growing pattern in the field of fabrication process. The R&D expenditures between these two kinds of suppliers showed a similar pattern. The fabrication process of display panel production is characterized as a highly integral architecture characteristics, so as to be a strong barriers to local suppliers, resulting less development of materials and components suppliers in Korea.

Optimization on the fabrication process of Si pressure sensors utilizing piezoresistive effect (압저항 효과를 이용한 실리콘 압력센서 제작공정의 최적화)

  • Yun Eui-Jung;Kim Jwayeon;Lee Seok-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.1
    • /
    • pp.19-24
    • /
    • 2005
  • In this paper, the fabrication process of Si pressure sensors utilizing piezoresistive effect was optimized. The efficiency(yield) of the fabrication process for Si piezoresistive pressure sensors was improved by conducting Si anisotrophic etching process after processes of piezoresistors and AI circuit patterns. The position and process parameters for piezoresistors were determined by ANSYS and SUPREM simulators, respectively. The measured thickness of p-type Si piezoresistors from the boron depth-profile measurement was in good agreement with the simulated one from SUPREM simulation. The Si anisotrohic etching process for diaphragm was optimized by adding ammonium persulfate(AP) to tetramethyl ammonium hydroxide (TMAH) solution.

Decomposition-based Process Planning far Layered Manufacturing of Functionally Gradient Materials (기능성 경사복합재의 적층조형을 위한 분해기반 공정계획)

  • Shin K.H.;Kim S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.223-233
    • /
    • 2006
  • Layered manufacturing(LM) is emerging as a new technology that enables the fabrication of three dimensional heterogeneous objects such as Multi-materials and Functionally Gradient Materials (FGMs). Among various types of heterogeneous objects, more attention has recently paid on the fabrication of FGMs because of their potentials in engineering applications. The necessary steps for LM fabrication of FGMs include representation and process planning of material information inside an FGM. This paper introduces a new process planning algorithm that takes into account the processing of material information. The detailed tasks are discretization (i.e., decomposition-based approximation of volume fraction), orientation (build direction selection), and adaptive slicing of heterogeneous objects. In particular, this paper focuses on the discretization process that converts all of the material information inside an FGM into material features like geometric features. It is thus possible to choose an optimal build direction among various pre-selected ones by approximately estimating build time. This is because total build time depends on the complexity of features. This discretization process also allows adaptive slicing of heterogeneous objects to minimize surface finish and material composition error. In addition, tool path planning can be simplified into fill pattern generation. Specific examples are shown to illustrate the overall procedure.

Development of Continuous UV Nano Imprinting Process Using Pattern Roll Stamper (패턴 롤 스템퍼를 이용한 연속 UV 나노 임프린팅 공정기술 개발)

  • Cha, J.;Ahn, S.;Han, J.;Bae, H.;Myoung, B.;Kang, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.105-108
    • /
    • 2006
  • It has been issued to fabricate nano-scale patterns with large-scale in the field of digital display. Also, large-scale fabrication technology of nano pattern is very important not only for the field of digital display but also for the most of applications of the nano-scale patterns in the view of the productivity. Among the fabrication technologies, UV nano imprinting process is suitable for replicating polymeric nano-scale patterns. However, in case of conventional UV nano imprinting process using flat mold, it is not easy to replicate large areal nano patterns. Because there are several problems such as releasing, uniformity of the replica, mold fabrication and so on. In this study, to overcome the limitation of the conventional UV nano imprinting process, we proposed a continuous UV nano imprinting process using a pattern roll stamper. A pattern roll stamper that has nano-scale patterns was fabricated by attaching thin metal stamper to a roll base. A continuous UV nano imprinting system was designed and constructed. As practical examples of the process, various nano patterns with pattern size of 500, 150 and 50nm were fabricated. Finally, geometrical properties of imprinted nano patterns were measured and analyzed.

  • PDF