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1. INTRODUCTION 
 

Wafer is an important material in semiconductor industries. 
In recent years, the size of wafers has been enlarged up to 300 
mm, so that management is essentially required and applied. 
The wafer manufacturing process includes certain chemical 
processes; there is a time delay that causes difficulty in 
measurement and control. Among the chemical processes, 
ingot fabrication is the most important, as the quality of the 
ingot will definitely affect the quality of the wafer.  

Over decades, many studies have been performed for fault 
detection and yield improvement. An adaptive resonance 
theory network [1] was used to develop an intelligent system 
that will be able to recognize defect spatial patterns to aid in 
the diagnosis of failure causes. A data warehouse approach to 
the automation of process zone-by-zone defect-limited yield 
analysis [2], and SOI wafer-specific behavior related to the 
intrinsic limitations of laser-scattering defect detection [3], 
was presented.  The modeling of wafer fabrication was 
carried out; the calculations and results of random 
defect-limited yield (DLY) using the deterministic yield model 
[4],   the spatial defect features and cluster chip locations 
having similar defect features that were extracted through the 
SOM neural network [5], and an automatic, wafer-scale, 
defect cluster identifier [6] and Geodesic Active Contours on a 
wafer-scale image to extract the overall dimensions of the 
wafer under inspection [7]. An advanced methodology using 
intentionally created defect arrays was implemented to 
enhance the understanding of defect detection tools [8]. 

Many studies related to fault detection and process 
optimization in wafer fabrication have been accomplished. 
Especially, fault detection that influence product quality has 
been achieved because when defects on a wafer form spatial 
patterns, it is usually a clue to the identification of equipment 
problems or process variations. The objectives of these studies 
were focused on detecting faults and adjusting the operational 
conditions for process optimization and to produce wafers 
with no defects. For the detection of faults, data mining tools 
are needed to analyze input-output data using models or rules. 
In order to select a proper method from various data mining 
methodologies, a data mining roadmap was generated in this 
study to assist in the selection of an appropriate methodology. 
The roadmap provided the methodologies selected for the data 
model to predict process quality and the rule set to seek the 
optimal operational conditions according to the model output. 

After selecting the method, data acquired from the target 
process is used in data mining. The collected data should be 
sufficient in number and clean enough to perform the data 
mining. Due to insufficient data for wafer’s quality in this 
research quality evaluation was performed according to 
sampling inspection, not total inspection. The lack of data 
causes an over-fitted model and incorrect rules. To overcome 
these problems, an appropriate data preprocessing of the 
bootstrap method was used to generate additional data 
sufficient for a total inspection. Improvement of model 
performance was observed from the results. 

In the following, the target process of the ingot fabrication 
process, the proposed road map for data mining, the applied 
data mining techniques, and the application to the 
experimental data are presented. 

 
2. WAFER FABRICATION 

 
2.1 Wafers for semiconductors 

Wafers are used in manufacturing memory or non-memory 
semiconductor chips. Several circuit masks are mounted on 
one wafer by UV rays or electron beams in assembly lines. As 
semiconductor technology has developed, the wafer size has 
been enlarged to mount more circuits on the wafer. In order to 
enlarge the capacity of memory and non-memory chips, 
larger-diameter wafers and strict quality assessment are 
required from wafer manufacturers. To cope with these 
requirements, optimization of wafer fabrication is essential.  

Wafer fabrication processes consist of crystal growth, wafer 
slicing, wafer polishing and cleaning, and epitaxial deposition. 
The factors of some process exist that cause defects. 
Nevertheless, it is difficult to return and maintain the optimal 
solutions for a given process conditions, because real-time 
analysis cannot be achieved in wafer fabrication. In this study, 
we develop the management system and evaluate its 
performance that analyzes process data related to yield and 
quality in wafer manufacturing and also it controls the 
operating parameters based on the process status. 
 
2.2 Ingot data 

Ingot is the first material manufactured in wafer fabrication. 
In ingot fabrication, the set-points for handling of the position 
or rotation of ingots and the control parameters are adjusted 
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for quality management. These operating parameters play an 
important role in wafer quality and size control. Thus, proper 
handling of the parameters is needed for improvement of 
productivity and yield. The operating parameters are used as 
inputs in modeling. The quality parameters consist of five 
concentration values, and six defect values. Four of these were 
used for outputs in modeling for the present study. Figure 1 
shows how to slice the ingot and to inspect the quality of 
wafers from the ingot. 
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Fig. 1. Sampling inspection of ingot in measuring quality. 
 

3. DESIGN OF DATAMINING ROADMAP 
 
3.1 Datamining  

Data mining techniques, such as extracting useful 
information from data or constructing an application model, 
are well suited to improve process performance and product 
quality. Data mining includes data selection, preprocessing, 
transformation, data mining and interpretation (Fig. 2). In 
order to obtain necessary information from the data, a series of 
the data processing methods were applied to the data obtained 
from the real wafer process.  

In the case of the insufficient data collected, a data selection 
and preprocessing procedure should be considered an 
important stage (Fig.2). The raw data used in this study were 
insufficient to extract rules because the data was mainly 
obtained under normal process conditions. The factors that 
affect the final quality were initially extracted. The statistical 
methods such as the Monte Carlo/Bootstrap method were 
utilized to fill vacancies in the data and overcome data 
shortages. 

The transformation step, as shown in Fig. 2, is one of the 
basic stages of data mining applications that can be applied to 
time-series data. This step was not used in this study as the 
wafer process data was not in the time-series format.  

 

Target Data

Preprocessed
Data

Data

Knowledge

Transformed
Data

Patterns

Selection

Interpretation

Data Mining

Transformation

Preprocessing

1

2

3

4

5

 
Fig. 2. Processes of data mining in knowledge creation. 

 
3.2 Data mining roadmap  

Many types of the data mining techniques can be applied to 
knowledge extraction. Figure 2 shows the data mining 
application procedure. Not all of the steps are used in data 
mining. Selection of the techniques depends on data features 
and mining targets. Therefore, selection of proper mining 
techniques is very important for reliable results.  

In this study, we proposed the roadmap for data mining. 
Figure 3 shows the proposed roadmap. A selection was made 
with reference to the methods and procedures for diagnosis 
and optimization of the ingot process by referring to the 
roadmap. The selected methods were data generation with the 
bootstrap method, prediction modeling of dynamic polynomial 
neural network. Data generation was used for data 
preprocessing, prediction modeling was applied to predict the 
quality of wafers. 

 
3.3 Application of datamining 
3.3.1 Data preprocessing in reducing data effects  

The collected data from assembly lines may be confined to 
specific cases; thus, the quality data are not always uniformly 
distributed. Insufficient data results in unreliable model 
prediction. It may be difficult to extract rules that encompass 
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Fig. 3. Data mining roadmap proposed in this study. 
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the general case with limited data. Low-frequency data can be 
traced to error values in rule extraction. In order to solve these 
problems, data preprocessing is required by adding data and 
improving performance. In this study, the Bootstrap method, 
which is a type of Monte Carlo method, and multiple 
regression models were applied to compensate leakage data 
caused by sampling inspection. This stage of data generation 
is a part of the roadmap. 

 
3.3.2 Data modeling in quality prediction  

In prediction models, inputs can affect the performance of 
the models. Selection of inputs corresponding to data 
characteristics is necessary to improve model performance, as 
unnecessary inputs may influence strongly on prediction 
results. Therefore, the principal inputs that greatly influence 
model accuracy were selected. For evaluation of the function, 
the dynamic polynomial neural network (DPNN) was used, as 
it has the advantages that requires only small computation and 
is very useful in modeling with high-dimension variables and 
a large amount of data. This method can also select essential 
inputs through the modeling stages, so that it may be able to 
improve accuracy of models. This stage of prediction 
modeling is another part of the roadmap. 

 
3.4 Process Management System in Ingot Fabrication  

The models designed and the rules extracted are integrated 
into the proposed process management system. This system 
will play an important quality management in ingot 
manufacturing. The quality will be predicted by models and 
the control parameters will be modified by rules on-line. The 
final system is shown in Fig. 4. 
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Fig 4. Structure of the proposed process management system 

 
4. APPLICATION OF DATA MINING TOOLS 

 
The process data have two characteristics. First, trace data 

for control parameters are collected by real-time measurement, 
but measurement data for quality parameters are measured by 
sampling inspection after manufacturing. Therefore, input and 
output data cannot be one-to-one correspondent and target 
data are insufficient. Second, quality data are included in three 
cases. The problem of insufficient data results in inadequate 
performance of the model. The Bootstrap method with data 
generation is then used. It is then followed by construction of 
the prediction model using the DPNN.  

 
4.1 Bootstrap method 

The bootstrap method was presented by Efron and 
Tibshirani [9]. In this study, the term bootstrap refers to Monte 
Carlo simulation that treats the original sample as a 
pseudo-population or as an estimate of the population where 
no parametric assumptions are made about the underlying 
population that generated the random sample. Instead, we use 
the sample as an estimate of the population. 

 
4.2 Dynamic polynomial neural network (DPNN) 

Polynomial neural network (PNN) based on GMDH 
algorithm is of value to model a system from many observed 
data and input variables. It is widely used for modeling of 
dynamic systems, prediction, and artificial intelligent control 
because of its advantages in data handling. The basic structure 
of PNN is two inputs and one output for each node. Figure 5 
includes the recurrent inputs with one-to-n time-delayed 
output variables. Thus, it is called the PNN as DPNN [34-36].  
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Fig. 5. Basic structure of DPNN. 

 
5. EXPERIMENTAL RESULTS 

 
5.1. Trace and Measurement Data of Ingots 

The collected data from ingot fabrication on the factory 
assembly lines are shown in Fig.6. Fourteen trace parameters 
and 11 measurement parameters that are used for quality 
analysis were included in the data sets. The trace parameter 
data are collected online. The measurement parameter data are 
gathered by sampling inspection and used for quality analysis. 

 
x1
x2
x3
x4
x5
x6
x7
x8
x9

x10
x11
x12
x13
x14

y1
y2
y3
y4
y5

y6

y7
y8
y9
y10
y11

x1
x2
x3
x4
x5
x6
x7
x8
x9

x10
x11
x12
x13
x14

y1
y2
y3
y4
y5

y6

y7
y8
y9
y10
y11

 
Fig. 6. Trace and measurement of parameter data. 

 
The left column of Table 1 shows puller trace data. 

Forty-eight process parameters are collected by one data set 
per one minute from pullers. Among the parameter data, 18 
important parameter data are stored in the database and used 
for process analysis. The position of the trace data represents 
the value of the wafer position (body length) of the 
measurement data. The second column of Table 1 shows the 
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puller measurement data collected off-line. The data were 
measured by sampling inspection after slicing the ingot into 
wafers, and indicates the ingot growth-related parameters. The 
wafer position corresponds to the position of the trace data.  

 
Table 1. Trace and measurement data of wafer. 

No Trace parameter Measurement parameter
1 OBSERV_TIME POSITION 
2 POSITION OXYGEN 
3 SD_ROT_SET ORG 
4 SD_ROTATION RES 
5 SD_LIFT_SET RRG 
6 SD_LIFT SPV 
7 CR_LIFT D_DEFECT 
8 CR_POSITION I_DEFECT 
9 CR_ROTATE OISF 
10 CZ_DIA SWIRL 
11 CZ_DIA_SET SLIP 
12 AR_GAS_FLOW LLPD 
13 CHAMB_PRESS  
14 UP_MAG_LOAD  
15 LO_MAG_LOAD  
16 HEAT_POWER  

 
The trace parameter data were gathered by online 

measurement, as shown in Fig. 7. The problem of insufficient 
data exists in modeling or at the stage of rule extraction. It 
may be solved by merging data from several pullers. Since 
each puller has a unique recipe, the features of each process 
are different. In this study, one puller data were added with 
data generated at the preprocessing stage at which the number 
of the target data can be the same as that of the input data. 
Figure 7 shows the data interpolation. 

 
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 y1 y2 y3 y4 y5

18.00 1.20 0.11 56.20 5.00 204.91 75.55 24.40 18.03 17.97 114.88 15.04 -14.11 10.95 3.30
17.98 1.04 0.12 56.20 5.00 204.84 77.15 24.40 18.00 17.94 114.90 11.57 -2.79 10.73 2.70
18.00 1.08 0.12 56.30 5.00 205.25 78.15 24.60 17.97 17.91 114.91 10.71
18.01 1.21 0.14 56.50 5.00 206.07 80.10 24.20 17.95 17.88 114.82 11.79 -5.85
18.04 0.82 0.09 56.70 5.00 205.20 82.05 24.20 17.89 17.85 114.80 10.72
18.03 1.38 0.11 56.70 5.00 206.01 83.45 24.60 17.87 17.82 114.76 10.69
18.01 1.39 0.16 57.00 5.00 206.34 85.45 24.40 17.84 17.79 114.73 10.71
18.01 1.45 0.17 57.10 5.00 206.86 87.40 24.20 17.81 17.74 114.70
18.01 1.30 0.15 57.20 5.00 206.63 89.60 24.80 17.76 17.71 114.65 10.68
18.01 0.96 0.15 57.50 5.00 206.63 91.55 24.60 17.73 17.68 114.64 10.67
18.01 1.01 0.12 57.50 5.00 206.77 93.40 24.40 17.68 17.65 114.64 10.7
18.00 0.98 0.11 57.60 5.00 206.50 94.50 24.60 17.65 17.62 114.61 10.68
17.99 1.16 0.13 57.70 5.00 206.45 96.10 24.40 17.63 17.59 114.59
18.00 0.84 0.14 57.90 5.00 206.50 97.95 24.60 17.60 17.56 114.54 10.69
18.03 0.62 0.06 78.80 5.01 206.70 116.90 24.20 12.88 12.82 111.17 10.25
18.01 0.62 0.06 78.80 5.03 206.79 116.85 24.20 12.85 12.79 113.12 11.47 -2.71 10.29 1.03
18.05 0.62 0.06 78.90 5.02 206.83 116.90 24.20 12.82 12.79 113.09
18.03 0.62 0.06 78.90 5.03 206.86 116.85 24.20 12.82 12.79 113.11 10.2
18.04 0.62 0.06 79.10 5.04 206.87 116.85 24.20 12.82 12.76 111.30 10.19
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Fig. 7. Data generation for quality data. 

 
5.2 Quality Prediction and Variable Selection using DPNN 
5.2.1 Data modeling using one puller data (Case 1) 

Figures 8 to 11 show the test results using the trained 
DPNN model with unobserved data. The prediction models 
were designed for quality prediction corresponding to Oxygen, 
ORG (Oxygen Gradient), RES (Resistivity), and RRG 
(Resistivity Gradient). In the case of RES, the model can be 
designed by one puller with sufficient data. And the model 
performance is also adequate to predict the quality of wafers 
with RES. However, three other parameter data are not 
sufficient to design a good performance model. The model 
was not trained well with one puller data. Table 2 shows the 
training and testing results and the selected inputs from 
modeling using one puller data.  

 
 

5.2.2 Advanced modeling based on data generation (Case 2) 
The preprocessing stage was required to compensate for 

weak points caused by insufficient data before applying the 
main data mining techniques. The Bootstrap method is used to 
solve the data problem. The Bootstrap method can generate 
reasonable data to design the data models and improve the 
model performance. Figures 12 to 15 show the improved 
results augmented by data generation. Table 3 shows the 
prediction results and the input selection, where AR gas flow, 
chamber pressure and heat power were selected. These control 
parameters have strong influence on the wafer quality, so these 
have to be carefully handled in fabrication processes. 
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Fig. 8. Prediction for Oxygen. 
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Fig. 9. Prediction for ORG. 
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Fig. 10. Prediction for RES. 
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Fig. 11. Prediction for RRG. 

 
Table 2. Results of modeling using one puller data. 

Value Oxygen ORG RES RRG 
Learning error 9.7089e-015 4.8174e-014 0.0632 4.5275e-016
Prediction error 1.4422 8.0759 0.043938 1.6293 

Selected layer 3 5 3 3 
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Fig. 12. Prediction for Oxygen. 
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Fig. 13. Prediction for ORG. 
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Fig. 14. Prediction for RES. 
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Fig. 15. Prediction for RRG. 

 
Table 3. Modeling results with data generation. 

Value Oxygen ORG RES RRG 
Learning error 0.4550 1.2730 0.3005 0.8512 
Prediction error 0.29528 1.8733 0.10423 1.2942 
Selected layer 4 4 4 3 

Selected inputs
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5.2.3 Comparison of performance of prediction models 

Table 4 shows the comparison of results for two cases of 
modeling. In Case 1, the models were designed for one puller 
with insufficient data, so that an over-fitting problem occurred. 
This means that a model trained by insufficient data cannot 
ensure the good performance of models.  

In Case 2, the model trained stably by data addition using 
the Bootstrap method showed good performance. The results 
indicate that statistical data generation can reduce the effect of 
insufficient data. It is difficult to analyze the relationship 
between inputs and outputs using field data as field data are 
often insufficient for modeling. Thus, data pre- processing is 
required. In this study, an adequate descriptive model was 
designed by data generation.  
 
 
 
 

1105



Table 4. Comparison of results for two cases. 
Value Case Oxygen ORG RES RRG

1 9.70e-015 4.81e-014 0.0632 4.52e-016
Learning error 

2 0.4550 1.2730 0.3005 0.8512
1 1.4422 8.0759 0.043938 1.6293

Prediction error 
2 0.29528 1.8733 0.10423 1.2942
1 3 5 3 3 

Selected layer 
2 4 4 4 3 

 
6. CONCLUSIONS 

 
The ingot fabrication process is one of the important 

sub-processes in wafer manufacturing. In ingot fabrication, 
quality inspection is accomplished by product sampling testing, 
and then the control parameter is adjusted by an operator’s 
action corresponding to the quality. Therefore, it is necessary 
to predict the quality with respect to current control 
parameters and to handle the parameters effectively. This 
function can be useful for low-defect wafer fabrication. 
However, it is difficult to design models using collected data 
from the field because the data are gathered by sampling 
inspection. In this study, we used the bootstrap method for 
data generation, and then designed models using the DPNN. 
Through the stages, the models and rules can be improved and 
their performance was reasonable.  

One aim of this study was to design a roadmap for data 
mining, because it is difficult to determine which method is 
the best for a given target plant. Her, we proposed a roadmap, 
based on which the applied methods were selected. The 
models will be utilized to integrate both the diagnosis and the 
optimization systems of the ingot fabrication process. 
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