• Title/Summary/Keyword: fabrication

Search Result 13,097, Processing Time 0.037 seconds

Nanoscale Fabrication of Biomolecular Layer and Its Application to Biodevices

  • Park, Jeong-Woo;Nam, Yun-Suk;Masamichi Fujihira
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.76-85
    • /
    • 2004
  • Biodevices composed of biomolecular layer have been developed in various fields such as medical diagnosis, pharmaceutical screening, electronic device, photonic device, environmental pollution detection device, and etc. The biomolecules such as protein, DNA and pigment, and cells have been used to construct the biodevices such as biomolecular diode, biostorage device, bioelectroluminescence device, protein chip, DNA chip, and cell chip. Substantial interest has focused upon thin film fabrication or the formation of biomaterials mono- or multi-layers on the solid surfaces to construct the biodevices. Based on the development of nanotechnology, nanoscale fabrication technology for biofilm has been emerged and applied to biodevices due to the various advantages such as high density immobilization and orientation control of immoblized biomolecules. This review described the nanoscale fabrication of biomolecular film and its application to bioelectronic devices and biochips.

Fabrication of Hybrid Composite Plates with an Active Frequency Selective Surface

  • Seo, Yun-Seok;Chun, Heoung-Jae;Hong, Ic-Pyo;Park, Young-Bae;Kim, Yoon-Jae
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.273-279
    • /
    • 2017
  • This paper describes the fabrication techniques and analysis of hybrid composite plates with an active frequency selective surface (FSS). For fabricating hybrid composite plate with active FSS, an active FSS with a resonance frequency located in the C band can obtained using varactor diodes. The hybrid composite plate was first designed and simulated to determine its electromagnetic properties using the commercial software HFSS. After simulation, active FSSs and hybrid composite plates were fabricated by mounting with varactor diodes. After fabrication, free space measurement was used to determine the electromagnetic properties of active FSS and the hybrid composite plates. The simulation and experimental results were in good agreement.

An Adaptive Dispatching Architecture for Constructing a Factory Operating System of Semiconductor Fabrication : Focused on Machines with Setup Times (반도체 Fab의 생산운영시스템 구축을 위한 상황적응형 디스패칭 방법론 : 공정전환시간이 있는 장비를 중심으로)

  • Jeong, Keun-Chae
    • IE interfaces
    • /
    • v.22 no.1
    • /
    • pp.73-84
    • /
    • 2009
  • In this paper, we propose a dispatching algorithm for constructing a Factory Operating System (FOS) which can operate semiconductor fabrication factories more efficiently and effectively. We first define ten dispatching criteria and propose two methods to apply the defined dispatching criteria sequentially and simultaneously (i.e. fixed dispatching architecture). However the fixed type methods cannot apply the criteria adaptively by considering changes in the semiconductor fabrication factories. To overcome this type of weakness, an adaptive dispatching architecture is proposed for applying the dispatching criteria dynamically based on the factory status. The status can be determined by combining evaluation results from the following three status criteria; target movement, workload balance, and utilization rate. Results from the shop floor in past few periods showed that the proposed methodology gives a good performance with respect to the productivity, workload balance, and machine utilization. We can expect that the proposed adaptive dispatching architecture will be used as a useful tool for operating semiconductor fabrication factories more efficiently and effectively.

A Carbon Nanotube Sample for the Fabrication of Nanotweezer (나노트위져 제작을 위한 탄소나노튜브 샘플)

  • Choi, Jai-Seong;Lee, Jun-Sok;Kang, Gyung-Soo;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.997-1000
    • /
    • 2004
  • This paper introduces our basic research about a carbon nanotube(CNT) sample for the fabrication of nanotweezer. We have made the nanotweezer through the physical adhesion of multi-walled carbon nanotubes(MWCNTs) on two sharp tungsten tips. Thereby we needed the CNT sample which is proper to this fabrication process. And we applied the dielectrophoretic methods to the fabrication of the CNT sample. During the basic experiment, we used a sharp edged electrode and a flat electrode as electrodes for dielectrophoresis and just a function generator as a voltage source for the generation of electric field.

  • PDF

Micro-electrode machining characteristics using the Micro-EDM (마이크로 방전가공기를 이용한 미세전극 가공특성)

  • 안현민;김영태;박성준;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1003-1007
    • /
    • 2002
  • Micro-EDM is generally used far machining micro 3-D structure. For micro-EDM, first of all, micro-electrode fabrication is needed and WEDG system is proposed for tool electrode fabrication method. When tool electrode is fabricated using WEDG system, its characteristics are under the control of many EDM parameters. Also relations between the parameters affect electrode fabrication. In this study, experiments are carried out to analyze effects of EDM parameters on micro-electrode fabrication. Experimental method and analysis are used to experimental design method. Factors used in experiments are composed of applied voltage, capacitance, wire feed rate, spindle rotating speed, machining time. As a result of experiments, wire feed rate, machining time and capacitance is proportional to gap distance(material removal), the other parameters(applied voltage, spindle rotating speed) and relations between the parameters have little influence on machining.

  • PDF

Non-lithographic Micro-structure Fabrication Technology and Its Application (Non-lithography 방법에 의한 마이크로 구조물 제작 및 응용)

  • 성인하;김진산;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.956-959
    • /
    • 2002
  • In this work, a new non-lithographic micro-fabrication technique is presented. The motivation of this work is to overcome the demerits of the most commonly used photo-lithographic techniques. The micro-fabrication technique presented in this work is a two-step process which consists of mechanical scribing followed by chemical etching. This method has many advantages over other micro-fabrication techniques since it is simple, cost-effective, rapid, and flexible. Also, the technique can be used to obtain a metal structure which has sub-micrometer width patterns. In this paper, the concept of this method and its application to microsystem technology are described.

  • PDF

Fabrication of Micro/Nano-patterns using MC-SPL(Mechano-Chemical Scanning Probe Lithography) Process

  • Sung, In-Ha;Kim, Dae-Eun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.22-26
    • /
    • 2003
  • In this work, a new non-photolithographic micro-fabrication technique is presented. The motivation of this work is to overcome the demerits of the most commonly used photolithographic techniques. The micro-fabrication technique presented in this work is a two-step process which consists of mechanical scribing followed by chemical etching. This method has many advantages over other micro-fabrication techniques since it is simple, cost-effective, rapid, and flexible. Also, the technique can be used to obtain a metal structure which has sub-micrometer width patterns. In this paper, the concept of this method and its application to microsystem technology are described.

Fabrication ofMicro/Nano-patterns using MC-SPL (Mechano-Chemical Scanning Probe Lithography) Process (미세탐침기반 기계-화학적 리소그래피공정에 의한 마이크로/나노패턴 제작)

  • 성인하;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.228-233
    • /
    • 2002
  • In this work, a new non-photolithographic micro-fabrication technique is presented. The motivation of this work is to overcome the demerits of the most commonly used photolithographic techniques. The micro-fabrication technique presented in this work is a two-step process which consists of mechanical scribing followed by chemical etching. This method has many advantages over other micro-fabrication techniques since it is simple, cost-effective, rapid, and flexible. Also, the technique can be used to obtain a metal structure which has sub-micrometer width patterns. In this paper, the concept of this method and its application to microsystem technology are described.

Surface Damage Characteristics of Self-Assembled Monolayer and Its Application in Metal Nano-Structure Fabrication (자기 조립 분자막의 표면파손특성 및 미세 금속 구조물 제작에의 응용)

  • Sung, In-Ha;Kim, Dae-Eun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.40-44
    • /
    • 2002
  • The motivation of this work is to use SAM(Self-Assembled Monolayer) for developing a rapid and flexible non-photolithographic nano-structure fabrication technique which can be utilized in micro-machining of metals as well as silicon-based materials. The fabrication technique implemented in this work consists of a two-step process, namely, mechanical scribing followed by chemical etching. From the experimental results, it was found that thiol on copper surface could be removed even under a few nN normal load. The nano-tribological characteristics of thiol-SAM on various metals were largely dependent on the native oxide layer of metals. Based on these findings, nano-patterns with sub-micrometer width and depth on metal surfaces such as Cu, Au and Ag could be obtained using a diamond-coated tip.

  • PDF

Fabrication of MDOF IPMC Actuators to Generate Undulatory Motion (파동형 움직임이 가능한 다자유 IPMC 구동기 제작)

  • Jeon, Jin-Han;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.119-123
    • /
    • 2006
  • The ionic-polymer-metal-composite actuators have the best merit for bio-mimetic locomotion because of their large bending performance. Especially, they have the advantage for mimicking a fish-like motion because IPMCs are useful to be actuated in water. So we have developed IPMC actuators with multiple electrodes for realization of biomimetic motion. Generally, the IPMC actuator has been fabricated in electroless plating technique, while it needs very long fabrication time and shows poor repeatability in the actuation performance owing to the variables in chemical fabrication process. Therefore, the novel fabrication methods were investigated by combining electroless plating and electroplating techniques capable of patterning precisely. On the whole, two different methods were compared and analyzed with similar thickness level of Platinum electrodes. Present results show that mixing chemical reduction and electroplating can be a promising candidate for electrode patterning.

  • PDF