• Title/Summary/Keyword: fabric membrane structures

Search Result 24, Processing Time 0.025 seconds

A Study on the Cutting Pattern Determination for Fabric Structures (막 구조물의 재단 패턴 결정에 관한 연구)

  • Choi, Ho;Lee, Jang-Bog;Kim, Jae-Yeol;Sur, Sam-Uel;Kwon, Taek-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.266-273
    • /
    • 1998
  • The object of this study is shape finding and cutting pattern generation of membrane structures under the following assumptions: (1) material is linearly elastic (2) stress state is plane stress. Cable and membrane structures should introduce the nonlinear analysis considering geometric nonlinearity because these structures deform largely under the external loads. The analysis procedure is consisted of three steps considering geometric nonlinearity unlike any other structures. First step is the shape finding analysis to determine the initial equilibrium shape. Second step is the stress-deformation analysis to investigate the behaviors of structures under various external loads. Once a satisfactory shape has been found, a cutting pattern based on the shape finding analysis may be generated from the view point of construction. In this paper, after shape finding analysis, cutting pattern determination procedure using weighted least-square minimization flattening method and some results are presented.

  • PDF

A Study on the Geodesic Line Algorithms for Cutting Pattern Generation of Membrane Structures (막 구조물의 재단도 생성을 위한 지오데식 라인 알고리즘에 관한 연구)

  • 배종효;한상을
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.357-364
    • /
    • 2000
  • The three main processes involved in the design of stressed membrane surface are surface form-finding, stress analysis and cutting pattern generation. The last process, cutting pattern generation, is considered as a very important procedure in the aspect of the practical design for the fabric membrane surface. In this paper, The cutting pattern generation technique using the geodesic line algorithms is first introduced. And the numerical examples resulting from this technique are presented. Cable elements are used for the approximating membrane surface and two kinds of model, square line and central line model, are used in pattern generation. Finally, a number of different cutting pattern generation for the same membrane surface is carried out and the numerical results are compared each

  • PDF

A Study of Shape Finding of Equally Stressed Surface for Membrane Structures by Dynamic Relaxation Method (동적이완법에 의한 막구조의 등장력곡면 형태해석에 관한 연구)

  • 한상을;이경수
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.321-330
    • /
    • 1998
  • 막구조의 초기형상을 결정하기 위하여 막요소의 기하학적 비선형을 고려한 평형방정식을 유도하고, 등장력곡면(equally stressed surface)을 결정하기 위한 알고리즘을 정식화한다. 막구조는 대변형에 의한 기하학적 비선형성을 포함하고, 막구조의 특성상 초기장력에 의한 초기변형을 고려해야 하므로, 본 논문에서는 막구조와 같은 인장구조물의 비선형 수치해석을 수행하기 위한 해석기법으로써, 동적이완법(Dynamic Relaxation Method)에 대한 해석알고리즘을 적용하고, 이 방법에 의해 수행한 해석결과를 검토함으로써 막구조 해석에 적용 가능한 수치해석기법을 제시하고, 수치해석에 대한 예를 통해 본 해석법의 타당성을 검증한다.

  • PDF

Flame Resistance Performance of Glass Fiber and Polyester Fiber Architectural Membranes (건축용 유리섬유 및 폴리에스테르섬유 막재의 난연특성)

  • Kim, JiHyeon;Song, Hun
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • Membrane structures can be used to create diverse lightweight structural forms using ductile membranes made of coated fabric. Using membrane structures, it is possible to construct large covered spaces relatively quickly and economically, and hence, they are being applied within various applications. The structures are light-weight, transparent, flexible in their application, economical and easy to maintain, and as such, their usage is being expanded. However, despite their prevalence, the standard for membrane material performance in terms of fire safety is still inadequate, and the development of membrane materials with excellent flame resistance performance is being demanded. This study determined flame resistance performance of architectural membranes, including PTFE, PVDF, PVF and ETFE film membranes, through flammability testing and incombustibility testing.

The method using dynamic load and static load figures out gust factor of the membrane structure (동적하중과 정적하중을 이용한 막구조의 거스트 계수 산출 방법)

  • Wang, Ben-Gang;Jeong, Jae-Yong;You, Ki-Pyo;Kim, Young-Moon
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.19-24
    • /
    • 2008
  • The thesis is for gust factor needing when calculate the wind resistance design. For the gust factor, to the membrane structural model, carry through the wind tunnel test and the static load test. Therefore, at first through the tensile test of the fabric material, designate the material of the membrane structural model. Then, to saddle, wave, arch and point four kinds of basic shape membrane structural models, carry on the wind tunnel test, determine their dynamic load and distortion on lateral direction. Finally, according to distort situation of the membrane structure in the wind tunnel test, carry on the static load experiment outside of the wind tunnel, calculate static load which corresponding with distort. According to dynamic load and the static load, figure out gust factor of these kinds of basic membrane structure.

  • PDF

Geodesic Shape Finding Algorithm for the Pattern Generation of Tension Membrane Structures (막구조물의 재단도를 위한 측지선 형상해석 알고리즘)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • Patterning with a geodesic line is essential for economical or efficient usage of membrane materialsin fabric tension membrane structural engineering and analysis. The numerical algorithm to determine the geodesic line for membrane structures is generally classified into two. The first algorithm finds a non-linear shape using a fictitious geodesic element with an initial pre-stress, and the other algorithm is the geodesic line cutting or searching algorithm for arbitrarily curved 3D surface shapes. These two algorithms are still being used only for the three-node plane stress membrane element, and not for the four-node element. The lack of a numerical algorithm for geodesic lines with four-node membrane elements is the main reason for the infrequent use of the four-node membrane element in membrane structural engineering and design. In this paper, a modified numerical algorithm is proposed for the generation of a geodesic line that can be applied to three- or four-node elements at the same time. The explicit non-linear static Dynamic Relaxation Method (DRM) was applied to the non-linear geodesic shape-finding analysis by introducing the fictitiously tensioned 'strings' along the desired seams with the three- or four-node membrane element. The proposed algorithm was used for the numerical example for the non-linear geodesic shape-finding and patterning analysis to demonstrate the accuracy and efficiency, and thus, the potential, of the algorithm. The proposed geodesic shape-finding algorithm may improve the applicability of the four-node membrane element for membrane structural engineering and design analysis simultaneously in terms of the shape-finding analysis, the stress analysis, and the patterning analysis.

Changes in Waterproofness and Breathability after Repeated Laundering and Durability of Electrospun Nanofiber Web Laminates (전기방사한 나노섬유 웹 라미네이트 소재의 반복 세탁에 따른 투습방수 성능 변화 및 내구성)

  • Lee, Kyung;Yoon, Bo-Ram;Lee, Seung-Sin
    • Fashion & Textile Research Journal
    • /
    • v.14 no.1
    • /
    • pp.122-129
    • /
    • 2012
  • To develop a waterproof breathable material, we fabricated three kinds of nanofiber web laminates using a massproduced electrospun nanofiber web with different substrates and layer structures. The waterproofness and breathability of nanofiber web laminates were evaluated after repeated launderings and compared with those of conventional waterproof breathable fabrics currently in use, including densely woven fabric, microporous membrane laminated fabric, and coated fabric. The durability of nanofiber web laminates, including adhesion strength, abrasion resistance, tensile strength, and tearing strength, was also assessed and compared with those of conventional waterproof breathable fabrics. The water vapor transmission of nanofiber web laminates increased slightly after repeated launderings, whereas the air permeability somewhat decreased after launderings but still maintained an acceptable level of air permeability. Laundering reduced the resistance to water penetration of nanofiber web laminates, which implies that laminating techniques or substrate materials that could support waterproofness of the laminated structure should be explored. The adhesion strength, abrasion resistance, tensile strength, and tearing strength of nanofiber web laminates were in a range comparable to conventional waterproof breathable materials.

Mechanical Characteristic Test of Architectural ETFE Film Membrane (건축용 ETFE 필름 막의 역학적 특성 시험)

  • Park, Kang-Geun;Yoon, Seoung-Hyun;Bae, Boo-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.2
    • /
    • pp.77-82
    • /
    • 2009
  • ETFE is the abbreviation of Ethlene Tetra Fluoro Ethlene, a sort of colorless and transparent granules. The advantage of ETFE film has chemical resistance, anti-stick property, very lightly material. The thickness of ETFE film is used to from 50 ${\mu}m$ to 300 ${\mu}m$ and have superior ability of daylight transmission and elongation, while the strength is lower than of fabric membrane. The tensile strength of ETFE film changes from 40Mpa to 60Mpa and the tensile strain at break can get to about 300-400%. The mechanical characteristic test of ETFE film is described in this paper. The tensile strain at break, the tensile strength and the stress-strain curve are obtained from the test. And then it was analyzed stress-strain characteristic by temperature and mechanical characteristic by cycling load.

  • PDF

A Study on the Shape-Decision Technique of Membrane Structures According to the Design Process and Shape Analysis (건축 설계프로세스와 형상해석을 통한 막 구조물의 형상결정 방안에 관한 연구)

  • Park, Sun-Woo;Kim, Seung-Deog;Shon, Su-Deok;Jeong, Eul-Seok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.115-124
    • /
    • 2007
  • The initial shape is arrived at by a self-formation process, which accomplishes a form in the natural world, or is determined analytically by considering the equilibrium of initial stress only. Therefore, the self-formation process, which accomplishes a form in the natural world is grasped and the types of modeling techniques available to find the shapes of soft structures are well investigated and classified. To establish a form-finding modeling techniques, the models of string, soap film, fabric, rubber, plaster, and etc. are used. These modeling techniques can be used as a method of understanding the characteristics of structures when the material of model shows similar characteristics. Generally, the model test confirms the structure based on numerical analysis, at the same time it is important preceding process to develop such a program. With the above process, the relationship between model test and numerical analysis becomes a feedback process. Therefore, in this study, two examples which have been accomplished from such a technique are investigated and considered according to modeling process.

  • PDF

Resorbability and histological reaction of bioabsorbable membranes (수종의 흡수성 차단막의 생체 분해도와 조직학적 반응)

  • Suk, Hun-Joo;Kwon, Suk-Hoon;Kim, Chang-Sung;Choi, Seong-Ho;Jeon, Dong-Won;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.781-800
    • /
    • 2002
  • The major goals of periodontal therapy are the functional regeneration of periodontal supporting structures already destructed by periodontal disease. There have been many efforts to develop materials and therapeutic methods to promote periodontal wound healing. With the development of non-resorbable membrane, GTR has proved to be the representive technique of periodontal regeneration. However, due to various clinical problems of non-resorbable membrane, resorbable membrane was developed and it showed to be clinically effective. The newly developed Para-Dioxanone membrane has a characteristic of non-woven fabric structures which is different from the generally used membranes with structure of mesh form. In addition, Chitosan membrane has been developed to apply its adventage maximally in GTR. Although a number of different types of membranes had been clinically used, researches on absorption rate of membranes were inadequate and limited to subjective opinions. However, since long term period of resorption and space maintenance are required in implant or ridge augmentation, accurate verification of resorption rate is clinically important. In this study, we had implanted Resolut(R), Biomesh(R), Para-Dioxanone membrane and Chitosan membrane (Size : 4mm ${\times}$ 4mm) on dorsal side of Sprague Dawley rat, and sacrified them after 4 weeks, 8 weeks, 12 weeks respectively. Histologic observation was carried out, and the following results were obtained by calculating the objective resorption rate. 1. In case of Resolut(R), external resorption took place initially, followed by internal resorption. Surface area are 5.76${\pm}$2.37$mm^2$, 4.90${\pm}$l.06$mm^2$, 4.90${\pm}$0.98$mm^2$ at 4 weeks, 8 weeks, 12 weeks respectively, and invasion rate of connective tissue to membrane are 31.6${\pm}$4.5%, 52.8${\pm}$9.4%, 56.4${\pm}$5.1% respectively. 2. Biomesh(R) showed a pattern of folding, relatively slow resorption rate with small size of membrane. Surface area are 3.62${\pm}$0.82$mm^2$, 3.63${\pm}$0.76$mm^2$, 4.07${\pm}$1.14$mm^2$ at 4 weeks, 8 weeks, 12 weeks respectively, and invasion rate of connective tissue to membrane are 26.1${\pm}$5.8%, 30.9${\pm}$3.4%, 29.2${\pm}$3.6%, respectively. 3. Para-Dioxanone membrane was surrounded by fibrous conncetive tissue externally, and resorption took place internally and externally. Surface area are 5.96${\pm}$1.05$mm^2$, 4.77${\pm}$10.76$mm^2$, 3.86${\pm}$0.84$mm^2$ at 4 weeks, 8 weeks, 12 weeks respectively, and invasion rate of connective tissue to membrane are 30.7${\pm}$5.1%, 53.3${\pm}$4.4%, 69.5${\pm}$3.1%, respectively. 4. Each fiber of Chitosan membrane was surrounded by connective tissue and showed external resorption pattern. It showed little invasion of inflammatory cells and excellent biocompatability. The resorption rate was relatively slow. Surface area are 6.01${\pm}$2.01$mm^2$, 5.49${\pm}$1.3$mm^2$, 5.06${\pm}$1.38$mm^2$ at 4 weeks, 8 weeks, 12 weeks respectively, and invasion rate of connective tissue to membrane are 31.3${\pm}$3.6%, 38.4${\pm}$3.80%, 39.7${\pm}$5.6%, respectively. Consequently, Para-Dioxanone membrane and Chitosan membrane are found to be clinically effective for their excellent tissue reaction and biocompatibility. Futhermore, the advantage of bone regenerating ability as well as the relatively long resorption period of Chitosan membrane, it might be widely used in implant or ridge augmentation.