• Title/Summary/Keyword: f-stable

Search Result 785, Processing Time 0.025 seconds

Purification and Properties of a Novel ${\beta}$-Glucosidase, Hydrolyzing Ginsenoside Rb1 to CK, from Paecilomyces Bainier

  • Yan, Qin;Zhou, Xin-Wen;Zhou, Wei;Li, Xing-Wei;Feng, Mei-Qing;Zhou, Pei
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1081-1089
    • /
    • 2008
  • A novel ginsenoside-hydrolyzing ${\beta}$-glucosidase was purified from Paecilomyces Bainier sp. 229 by a combination of Q-Sepharose FF, phenyl-Sepharose CL-4B, and CHT ceramic hydroxyapatite column chromatography. The purified enzyme was a monomeric protein with a molecular mass estimated to be 115 kDa. The optimal enzyme activity was observed at pH 3.5 and $60^{\circ}C$. It was highly stable within pH 3-9 and at temperatures lower than $55^{\circ}C$. The enzyme was specific to ${\beta}$-glucoside. The order of enzyme activities against different types of ${\beta}$-glucosidic linkages was ${\beta}$-(1-6)>${\beta}$-(1-2)>${\beta}$-(1-4). The enzyme converted ginsenoside Rb1 to CK specifically and efficiently. An 84.3% amount of ginsenoside Rb1, with an initial concentration of 2 mM, was converted into CK in 24 h by the enzyme at $45^{\circ}C$ and pH 3.5. The hydrolysis pathway of ginsenoside Rb1 by the enzyme was $Rb1{\to}Rd{\to}F2{\to}CK$. Five tryptic peptide fragments of the enzyme were identified by a newly developed de novo sequencing method of post-source decay (PSD) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. By comparing the five identified peptide sequences with the NCBI database, this purified ${\beta}$-glucosidase proves to be a new protein that has not been reported before.

Purification and Characterization of an Antifungal Antibiotic from Bacillus subtilis LAM 97-44 (Bacillus subtilis LAM 97-44가 생산하는 항진균성 항생물질의 정제 및 특성)

  • Lee, No-Woon;Kwon, Tae-Jong;Yi, Dong-Heui
    • Applied Biological Chemistry
    • /
    • v.46 no.2
    • /
    • pp.69-73
    • /
    • 2003
  • A novel antifungal antibiotic for azole-resistant Candida albicans was purified from the culture broth of Bacillus subtilis LAM 97-44 by butanol extraction, Diaion HP-20 and Dowex-50 adsorption chromatography, silica gel flash chromatography followed by HPLC and designated LAM-44A. LAM-44A was stable for 60 min at $100^{\circ}C$, and pH range from 2 to 10. MIC values were observed at $0.5-3.5\;{\mu}g/ml$ against various Candida albicans strains. The antibiotic showed no cytotoxicity for S180, MKN-45, P388, HeLa and 373 at the concentration of 1 mg/ml. LAM-f4A was colorless powder soluble in water, methanol, ethanol, butanol and negative to ninhydrin reaction. The antibiotic had maximum absorption at 273 nm in methanol, and melting point was $202^{\circ}C$. The molecular weight and formula were determined to be 282 and $C_{14}H_{34}O_5$ by $^1H-NMR,\;^{13}C-NMR$, IR spectrum and elemental analysis.

Generation and Expression in Plants of a Single-Chain Variable Fragment Antibody Against the Immunodominant Membrane Protein of Candidatus Phytoplasma Aurantifolia

  • Shahryari, F.;Safarnejad, M.R.;Shams-Bakhsh, M.;Schillberg, S.;Nolke, G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1047-1054
    • /
    • 2013
  • Witches' broom of lime is a disease caused by Candidatus Phytoplasma aurantifolia, which represents the most significant global threat to the production of lime trees (Citrus aurantifolia). Conventional disease management strategies have shown little success, and new approaches based on genetic engineering need to be considered. The expression of recombinant antibodies and fragments thereof in plant cells is a powerful approach that can be used to suppress plant pathogens. We have developed a single-chain variable fragment antibody (scFvIMP6) against the immunodominant membrane protein (IMP) of witches' broom phytoplasma and expressed it in different plant cell compartments. We isolated scFvIMP6 from a naïve scFv phage display library and expressed it in bacteria to demonstrate its binding activity against both recombinant IMP and intact phytoplasma cells. The expression of scFvIMP6 in plants was evaluated by transferring the scFvIMP6 cDNA to plant expression vectors featuring constitutive or phloem specific promoters in cassettes with or without secretion signals, therefore causing the protein to accumulate either in the cytosol or apoplast. All constructs were transiently expressed in Nicotiana benthamiana by agroinfiltration, and antibodies of the anticipated size were detected by immunoblotting. Plant-derived scFvIMP6 was purified by affinity chromatography, and specific binding to recombinant IMP was demonstrated by enzyme-linked immunosorbent assay. Our results indicate that scFvIMP6 binds with high activity and can be used for the detection of Ca. Phytoplasma aurantifolia and is also a suitable candidate for stable expression in lime trees to suppress witches' broom of lime.

Dictyostelium discoideum Ax2 as an Assay System for Screening of Pharmacological Chaperones for Phenylketonuria Mutations

  • Kim, Yu-Min;Yang, Yun Gyeong;Kim, Hye-Lim;Park, Young Shik
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.782-787
    • /
    • 2015
  • In this study, we developed an assay system for missense mutations in human phenylalanine hydroxylases (hPAHs). To demonstrate the reliability of the system, eight mutant proteins (F39L, K42I, L48S, I65T, R252Q, L255V, S349L, and R408W) were expressed in a mutant strain (pah-) of Dictyostelium discoideum Ax2 disrupted in the indigenous gene encoding PAH. The transformed pah - cells grown in FM minimal medium were measured for growth rate and PAH activity to reveal a positive correlation between them. The protein level of hPAH was also determined by western blotting to show the impact of each mutation on protein stability and catalytic activity. The result was highly compatible with the previous ones obtained from other expression systems, suggesting that Dictyostelium is a dependable alternative to other expression systems. Furthermore, we found that both the protein level and activity of S349L and R408W, which were impaired severely in protein stability, were rescued in HL5 nutrient medium. Although the responsible component(s) remains unidentified, this unexpected finding showed an important advantage of our expression system for studying unstable proteins. As an economic and stable cell-based expression system, our development will contribute to mass-screening of pharmacological chaperones for missense PAH mutations as well as to the in-depth characterization of individual mutations.

Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification

  • Shin, Jung-Hun;Kim, Byung-Chun;Choi, Okkyoung;Kim, Hyunook;Sang, Byoung-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1670-1679
    • /
    • 2015
  • Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4+-N/m3/d and 0.10-0.21 kg NO3--N/m3/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4+ or NO3- loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.

Design and Fabrication of the SHP Mixer for the 5 GHz Band Wireless Communication System (5 GHz 대역 무선통신용 SHP 혼합기 설계 및 제작)

  • Kim Kab-Ki;Ahn Young-Sup
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.875-879
    • /
    • 2004
  • In this paper, sub-harmonic pumped(SHP) mixer using anti-parallel diode pair(APDP) is designed for 5 GHz band wireless communication system. Conventional mixers mix LO with RF, and obtain IF signal from the difference between LO and RF. As the frequency increase, LO signal requires higher LO power, better phase noise characteristics, more stable La. However, using APDP, the SHP mixer mixes the 2nd harmonics of LO signal. Therefore, the SHP mixer has an advantage that the LO signal frequency required for IF signal is reduced at half value of LO fundamental frequency. When LO power is 3 dBm, the conversion loss of manufactured SHP mixer is 12.83 dB. The isolation of LO/IF, 2LO/IF, RF/1F and LO/RF is 39.17 dB, 58 dB, 34 dB, and 67.9 dB. respectively. For this case, IP3 at input is 8 dBm.

Anti-wrinkle Effect of N-Acetyl-D-glucosamine (NAG) (N-Acetyl-D-glucosamine (NAG)의 피부주름 개선 효과)

  • Kim Kwang Soo;Choi Gun Ho;Choi Jang Woo;Choi Jun Hak;Han Song Hee;Nam Sang Yun;Lee Seung Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.457-462
    • /
    • 2004
  • Anti-wrinkle effect of N-Acetyl-D-glucosamine (NAG) was evaluated by collagen synthesis and proliferation of normal human fibroblast. NAG was obtained by purifying deacetylated chitin which can be derived from chitin-rich crab shell. We studied in in-vitro cultures of human normal fibroblast, whether synthesis of collagens and fibroblast growth activation in these cells can be enhanced in the presence of NAG. It 야d not show any adverse effects in human shin irritation patch test. In in-vivo mouse test, it showed anti-wrinkle effect in hairless mouse (6W/F). From the HPLC analysis, the stability of NAG in the cosmetics product could be maintained for a long time. These results demonstrated that NAS can be useful anti-wrinkle cosmetic ingredient.

DEVELOPMENT STATUS OF IRRADIATION DEVICES AND INSTRUMENTATION FOR MATERIAL AND NUCLEAR FUEL IRRADIATION TESTS IN HANARO

  • Kim, Bong-Goo;Sohn, Jae-Min;Choo, Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.203-210
    • /
    • 2010
  • The $\underline{H}igh$ flux $\underline{A}dvanced$ $\underline{N}eutron$ $\underline{A}pplication$ $\underline{R}eact\underline{O}r$ (HANARO), an open-tank-in-pool type reactor, is one of the multi-purpose research reactors in the world. Since the commencement of HANARO's operations in 1995, a significant number of experimental facilities have been developed and installed at HANARO, and continued efforts to develop more facilities are in progress. Owing to the stable operation of the reactor and its frequent utilization, more experimental facilities are being continuously added to satisfy various fields of study and diverse applications. The irradiation testing equipment for nuclear fuels and materials at HANARO can be classified into capsules and the Fuel Test Loop (FTL). Capsules for irradiation tests of nuclear fuels in HANARO have been developed for use under the dry conditions of the coolant and materials at HANARO and are now successfully utilized to perform irradiation tests. The FTL can be used to conduct irradiation testing of a nuclear fuel under the operating conditions of commercial nuclear power plants. During irradiation tests conducted using these capsules in HANARO, instruments such as the thermocouple, Linear Variable Differential Transformer (LVDT), small heater, Fluence Monitor (F/M) and Self-Powered Neutron Detector (SPND) are used to measure various characteristics of the nuclear fuel and irradiated material. This paper describes not only the status of HANARO and the status and perspective of irradiation devices and instrumentation for carrying out nuclear fuel and material tests in HANARO but also some results from instrumentation during irradiation tests.

The Novel SCN- Ion-selective Electrode Based on the 1-Benzyl-3-(4-nitrophenyl) thio-urea Ionophore

  • Lee, Kyungmi;Kang, Dong Hyeon;Choe, Ju Eun;Yun, Mira;You, Jung-Min;Go, Min Jeong;Lee, Junseong;Jeon, Seungwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3175-3180
    • /
    • 2014
  • A potentiometric sensor based on the 1-benzyl-3-(4-nitrophenyl) thio-urea was synthesized and tested as an ionophore in PVC based membrane sensor towards $SCN^-$ ions. This membrane exhibits a linear stable response over a wide concentration range ($1.0{\times}10^{-5}$ to $1.0{\times}10^{-2}M$) with a slope of -59.2 mV/dec., a detection limit of ${\log}[SCN^-]=-5.05$, and a selectivity coefficient for thiocyanate against perchlorate anion of ${\log}K^{pot}_{SCN^-j}=-0.133$. The selectivity series of the membrane is as follows: $SCN^-$ > $ClO_4{^-}$ > $I^-$ > $NO_3{^-}$ > $HSO_3{^-}$ > $Cl^-$ > $HSO_4{^-}$ > $F^-$ > $CH_3COO^-$ > $HCO_3{^-}$ > $Br^-$ > $H_2PO_4{^-}$ > $SO{_3}^{2-}$ > $SO{_4}^{2-}$ > $CO{_3}^{2-}$. The proposed electrode showed good selectivity and a good response for the $SCN^-$ ion over a wide variety of other anions in pH 6.0 buffer solutions and has a fast response time of about < 5s. The influences of the membrane by pH, ionophore, and plasticizer were studied.

Fabrication of Field Emission Device Using Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition (열 화학 기상 증착법을 이용한 탄소 나노 튜브 전계 방출 소자의 제조)

  • Yu, W.J.;Cho, Y.S.;Choi, G.S.;Kim, D.J.;Kim, H.Y.;Yoon, S.K.
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.333-337
    • /
    • 2003
  • We report a new fabrication process for carbon nanotube field emitters with high performance. The key of the fabrication process is trim-and-leveling the carbon nanotubes grown in trench structures by employing a planarization process, which leads to a uniform distance from the carbon nanotube tip to the electrode. In order to enable this processing, spin-on-glass liquid is applied over the CNTs grown in trench to have them stubborn adhesion among themselves as well as to the substrate. Thus fabricated emitters reveal an extremely stable emission and aging characteristics with a large current density of 40 ㎃/$\textrm{cm}^2$ at 4.5 V/$\mu\textrm{m}$. The field enhancement factor calculated from the F-N plot is $1.83${\times}$10^{5}$ $cm^{-1}$ , which is a very high value and indicates a superior quality of the emitter originating from the nature of open-tip and high stability of the carbon nanotubes obtained new process.